970 resultados para Edge effect
Resumo:
Three vinylene linked diketopyrrolopyrrole based donor acceptor (D-A) copolymers have been synthesized with phenyl, thienyl, and selenyl units as donors. Optical and electronic properties were investigated with UV-vis absorption spectroscopy, cyclic voltammetry, near edge X-ray absorption spectroscopy, organic field effect transistor (OFET) measurements, and density functional theory (DFT) calculations. Optical and electrochemical band gaps decrease in the order phenyl, thienyl, and selenyl. Only phenyl-based polymers are nonplanar, but the main contributor to the larger band gap is electronic, not structural effects. Thienyl and selenyl polymers exhibit ambipolar charge transport but with higher hole than electron mobility. Experimental and theoretical results predict the selenyl system to have the best transport properties, but OFET measurements prove the thienyl system to be superior with p-channel mobility as high as 0.1 cm(2) V-1 s(-1).
Resumo:
In one dimension, noninteracting particles can undergo a localization-delocalization transition in a quasiperiodic potential. Recent studies have suggested that this transition transforms into a many-body localization (MBL) transition upon the introduction of interactions. It has also been shown that mobility edges can appear in the single particle spectrum for certain types of quasiperiodic potentials. Here, we investigate the effect of interactions in two models with such mobility edges. Employing the technique of exact diagonalization for finite-sized systems, we calculate the level spacing distribution, time evolution of entanglement entropy, optical conductivity, and return probability to detect MBL. We find that MBL does indeed occur in one of the two models we study, but the entanglement appears to grow faster than logarithmically with time unlike in other MBL systems.
Resumo:
We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.
Resumo:
For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-N-2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.
Resumo:
The influence of each of the six different types of morphological imperfection - waviness, non-uniform cell wall thickness, cell-size variations, fractured cell walls, cell-wall misalignments, and missing cells - on the yielding of 2D cellular solids has been studied systematically for biaxial loading. Emphasis is placed on quantifying the knock-down effect of these defects on the hydrostatic yield strength and upon understanding the associated deformation mechanisms. The simulations in the present study indicate that the high hydrostatic strength, characteristic of ideal honeycombs, is reduced to a level comparable with the deviatoric strength by several types of defect. The common source of this large knock-down is a switch in deformation mode from cell wall stretching to cell wall bending under hydrostatic loading. Fractured cell edges produce the largest knock-down effect on the yield strength of 2D foams, followed in order by missing cells, wavy cell edges, cell edge misalignments, Γ Voronoi cells, δ Voronoi cells, and non-uniform wall thickness. A simple elliptical yield function with two adjustable material parameters successfully fits the numerically predicted yield surfaces for the imperfect 2D foams, and shows potential as a phenomenological constitutive law to guide the design of structural components made from metallic foams.
Resumo:
Dynamic compression tests were performed by means of a Split Hopkinson Pressure Bar (SHPB). Test materials were 2124Al alloys reinforced with 17% volume fraction of 3, 13 and 37 μm SiC particles, respectively. Under strain rate ε = 2100 l/s, SiC particles have a strong effect on σ0.2 of the composites and the σ0.2 increases with different SiC particle size in the following order: 2124Al-alloy → 124Al/SiCp (37 μm) → 2124Al/SiCp (13 μm) → 2124Al/SiCp (3 μm), and the strain hardening of the composites depends mainly on the strain hardening of matrix, 2124A1 alloy. The results of dimensional analysis present that the flow stress of these composites not only depends on the property of reinforcement and matrix but also relates to the microstructure scale, matrix grain size, reinforcement size, the distance between reinforcements and dislocations in matrix. The normalized flow stress here is a function of inverse power of the edge-edge particle spacing, dislocation density and matrix grain size. Close-up observation shows that, in the composite containing SiC particles (3 μm), localized deformation formed readily comparing with other materials under the same loading condition. Microscopic observations indicate that different plastic flow patterns occur within the matrix due to the presence of hard particles with different sizes.
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.
Resumo:
Some problems of edge waves and standing waves on beaches are examined.
The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.
Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.
The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.
Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.
Resumo:
The Er3+/Yb3+ co-doped glasses with compositions of xBi(2)O(3)-(65-x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O (where x = 0, 2.5, 5, 7.5 and 10 mol%) were prepared using the normal melt quench technique. The optical absorption spectra of the glasses were recorded in the wavelength range 300-1700 nm. The effect of Bi2O3 content on the thermal stability and absorption spectra of glasses was investigated. In addition, the Judd-Ofelt parameters and oscillator strengths were calculated by employing Judd-Ofelt theory. It was observed that the positions of the fundamental absorption edge and cut-off wavelength shifted towards red as the content of Bi2O3 increased. However, there were no red shifts found both in the peak wavelength and in the center of mass wavelength of all absorption bands with Bi2O3 content increasing. The results of Judd-Ofelt theory analysis showed that Judd-Ofelt parameters Omega(t), (t = 2, 4, 6) changed sharply when Bi2O3 concentration exceeded 5 mol%. The variation trends of experimental oscillator strength were similar with those of Judd-Ofelt parameters as function of Bi2O3 concentrations. Moreover, differential scanning calorimetry experiments showed that the increases of Bi2O3 content weakened the network structure and then lowered the thermal stability of the glasses. The spontaneous emission probability A(rad), branching ratio beta and the radiative lifetime tau(rad) were also calculated and analyzed. The stimulated emission cross-section of Er3+ was calculated according to the McCumber theory. It was found that the stimulated emission cross-section of Er3+ was monotonically increases with Bi2O3 content increasing. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tm3+-Yb3+ codoped oxyfluoride silicate glasses suitable for upconversion laser has been fabricated. In this paper, effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+ codoped oxyfluoride silicate glasses have been systematically investigated. The experimental results indicate that, with the substitution CdF2 for PbF2, the glass thermal stability increases and the UV cutoff edge moves to short-wave band slightly. With increasing CdF2 content, the blue and red upconversion luminescence intensity increases slightly at first, and then increases rapidly. While the near infrared (NIR) upconversion emission intensity increases notably at first and then increases slightly. However, the blue and NIR luminescence intensity are much stronger than that of red, indicating these oxyfluoride silicate glasses are more preferable for blue and NIR emissions than red emission. The possible upconversion mechanisms for the blue, red and NIR fluorescence are also estimated and evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ZnO films were grown on (0 0 0 1) LiNbO3 substrates by metal organic chemical vapor deposition (MOCVD). Annealing of ZnO films was performed in air for I h at 800 degrees C. The effects of annealing on the structural and optical properties of ZnO thin films on LiNbO3 substrates were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) measurements. XRD patterns and AFM showed that the as-grown and the annealed ZnO films grown on LiNbO3 substrates had c-axis preferential orientation, the crystallinity of the ZnO films grown on LiNbO3 Substrates was improved, and the grain size increased by annealing. The PL spectra showed that the intensity of the UV near-band-edge peak was increased after annealing, while the intensity of visible peak (deep-level emission) decreased. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
ZnO/ITO/ZnO sandwich structure films were fabricated. The effects of buffer layer on the structure and optical properties of ZnO films were investigated by x-ray diffraction (XRD), photoluminescence, optical transmittance, and absorption measurements. XRD spectra indicate that a buffer layer has the effects of lowering the grain orientation of ZnO films and increasing the residual stresses in the films. The near-band-edge emissions of ZnO films deposited on both single indium tin oxide (ITO) buffer and ITO/ZnO double buffers are significantly enhanced compared with that deposited on a bare substrate due to the quantum confinement effect. (C) 2006 American Institute of Physics.
Resumo:
Experimental data have demonstrated that mushroom-shaped fibrils adhere much better to smooth substrates than punch-shaped fibrils. We present a model that suggests that detachment processes for such fibrils are controlled by defects in the contact area that are confined to its outer edge. Stress analysis of the adhered fibril, carried out for both punch and mushroom shapes with and without friction, suggests that defects near the edge of the adhesion area are much more damaging to the pull-off strength in the case of the punch than for the mushroom. The simulations show that the punch has a higher driving force for extension of small edge defects compared with the mushroom adhesion. The ratio of the pull-off force for the mushroom to that of the punch can be predicted from these simulations to be much greater than 20 in the friction-free case, similar to the experimental value. In the case of sticking friction, a ratio of 14 can be deduced. Our analysis also offers a possible explanation for the evolution of asymmetric mushroom shapes (spatulae) in the adhesion organ of geckos.
Resumo:
This paper describes an investigation into the effect that passing wakes have on a separation bubble that exists on the pressure surface and near the leading edge of a low pressure turbine blade. Previous experimental studies have shown that the behaviour of this separation is strongly incidence dependent and that it responds to its disturbance environment. The results presented in this paper examine the effect of wake passing in greater detail. Two dimensional, Reynolds averaged, numerical predictions are first used to examine qualitatively the unsteady interaction between the wakes and the separation bubble. The separation is predicted to consist of spanwise vortices whose development is in phase with the wake passing. However, comparison with experiments shows that the numerical predictions exaggerate the coherence of these vortices and also overpredict the time-averaged length of the separation. Nonetheless, experiments strongly suggest that the predicted phase locking of the vortices in the separation onto the wake passing is physical.
Resumo:
The interaction between a high-pressure rotor and a downstream vane is dominated by vortex-blade interaction. Each rotor blade passing period two co-rotating vortex pairs, the tip-leakage and upper passage vortex and the lower passage and trailing shed vortex, impinge on, and are cut by, the vane leading edge. In addition to the streamwise vortex the tip-leakage flow also contains a large velocity deficit. This causes the interaction of the tip-leakage flow with a downstream vane to differ from typical vortex blade interaction. This paper investigates the effect these interaction mechanisms have on a downstream vane. The test geometry considered was a low aspect ratio second stage vane located within a S-shaped diffuser with large radius change mounted downstream of a shroudless high-pressure turbine stage. Experimental measurements were conducted at engine-representative Mach and Reynolds numbers, and data was acquired using a fast-response aerodynamic probe upstream and downstream of the vane. Time-resolved numerical simulations were undertaken with and without a rotor tip gap in order to investigate the relative magnitude of the interaction mechanisms. The presence of the upstream stage is shown to significantly change the structure of the secondary flow in the vane and to cause a small drop in its performance.