985 resultados para Edge effect
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the `signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper. We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
An array of different structural probes has been used to define the effect of adding Zn and Ti to a sodium-calcium phosphate glass. X-ray absorption spectroscopy at the Zn K-edge suggests that the Zn atoms occupy mixed (4- and 6-fold) sites within the glass matrix. X-ray diffraction reveals a feature at 2.03 angstrom that develops with the addition of Zn and Ti and is consistent with Zn-O and Ti-O near-neighbour distances. Neutron diffraction is used to resolve two distinct P-O distances and highlights the decrease in P center dot center dot center dot P coordination number from 2.0 to 1.7 as the Ti metal concentration rises, which is attributed to the O/P fraction moving away from the metaphosphate value of 3.0 to 3.1 with the addition of Ti. Other correlations, such as those associated with CaO(x) and NaO(x) polyhedra, remain largely unaffected. These results suggest that the network forming P center dot center dot center dot P correlation is most disrupted, with the disorder parameter rising from 0.07 to 0.10 angstrom with the additional modifiers. Zn appears to be introduced into the network as a direct replacement for Ca and causes no structural variation over the composition range studied.
Resumo:
Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.
Resumo:
Magnesium borate hydroxide (MBH) nanowhiskers were synthesized using a one step hydrothermal process with different surfactants. The effect surfactants have on the structure and morphology of the MBH nanowhiskers has been investigated. The X-ray diffraction profile confirms that the as-synthesized material is of single phase, monoclinic MgBO2(OH). The variations in the size and shape of the different MBH nanowhiskers have been discussed based on the surface morphology analysis. The annealing of MBH nanowhiskers at 500 °C for 4 h has significant effect on the crystal structure and surface morphology. The UV–vis absorption spectra of the MBH nanowhiskers synthesized with and without surfactants show enhanced absorption in the low-wavelength region, and their optical band gaps were estimated from the optical band edge plots. The photoluminescence spectra of the MBH nanowhiskers produced with and without surfactants show broad emission band with the peak maximum at around 400 nm, which confirms the dominant contribution from the surface defect states.
Resumo:
Sex change, or sequential hermaphroditism, occurs in the plant and animal kingdoms and often determines a predominance of the first sex. Our aim was to explore changes in sex ratios within the range of the species studied: Patella vulgata and Patella depressa. The broad-scale survey of sex with size of limpets covered a range of latitudes from Zambujeira do Mar (southern Portugal) to the English Channel. Indirect evidence was found for the occurrence of protandry in P. vulgata populations from the south of England, with females predominating in larger size-classes; cumulative frequency distributions of males and females were different; sex ratios were biased towards males and smallest sizes of males were smaller than the smallest sizes of females. In contrast in Portugal females were found in most size-classes of P. vulgata. In P. depressa populations from the south coast of England and Portugal females were interspersed across most size-classes; size distributions of males and females and size at first maturity of males and females did not differ. P. depressa did, however, show some indications of the possibility of slight protandry occurring in Portugal. The test of sex ratio variation with latitude indicated that P. vulgata sex ratios might be involved in determining the species range limit, particularly at the equatorward limit since the likelihood of being male decreased from the south coast of England to southern Portugal. Thus at the southern range limit, sperm could be in short supply due to scarcity of males contributing to an Allee effect.
Resumo:
Sex change, or sequential hermaphroditism, occurs in the plant and animal kingdoms and often determines a predominance of the first sex. Our aim was to explore changes in sex ratios within the range of the species studied: Patella vulgata and Patella depressa. The broad-scale survey of sex with size of limpets covered a range of latitudes from Zambujeira do Mar (southern Portugal) to the English Channel. Indirect evidence was found for the occurrence of protandry in P. vulgata populations from the south of England, with females predominating in larger size-classes; cumulative frequency distributions of males and females were different; sex ratios were biased towards males and smallest sizes of males were smaller than the smallest sizes of females. In contrast in Portugal females were found in most size-classes of P. vulgata. In P. depressa populations from the south coast of England and Portugal females were interspersed across most size-classes; size distributions of males and females and size at first maturity of males and females did not differ. P. depressa did, however, show some indications of the possibility of slight protandry occurring in Portugal. The test of sex ratio variation with latitude indicated that P. vulgata sex ratios might be involved in determining the species range limit, particularly at the equatorward limit since the likelihood of being male decreased from the south coast of England to southern Portugal. Thus at the southern range limit, sperm could be in short supply due to scarcity of males contributing to an Allee effect.
Resumo:
Web openings could be used in cold-formed steel beam members, such as wall studs or floor joints, to facilitate ease of services in buildings. In this paper, a combination of tests and non-linear finite element analyses is used to investigate the effect of such holes on web crippling under end-one-flange (EOF) loading condition; the cases of both flanges fastened and unfastened to the bearing plates are considered. The results of 74 web crippling tests are presented, with 22 tests conducted on channel sections without web openings and 52 tests conducted on channel sections with web openings. In the case of the tests with web openings, the hole was either located centred above the bearing plates or having a horizontal clear distance to the near edge of the bearing plates. A good agreement between the tests and finite element analyses was obtained in term of both strength and failure modes.
Resumo:
A parametric study of cold-formed steel sections with web openings subjected to web crippling under end-one-flange (EOF) loading condition is undertaken, using finite element analysis, to investigate the effects of web holes and cross-section sizes. The holes are located either centred above the bearing plates or with a horizontal clear distance to the near edge of the bearing plates. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, the ratio of the length of bearing plates to the flat depth of the web and the location of the holes as defined by the distance of the hole from the edge of the bearing plate divided by the flat depth of web. In this study, design recommendations in the form of web crippling strength reduction factor equations are proposed, which are conservative when compared with the experimental and finite element results.
Resumo:
Many cloud-based applications employ a data centre as a central server to process data that is generated by edge devices, such as smartphones, tablets and wearables. This model places ever increasing demands on communication and computational infrastructure with inevitable adverse effect on Quality-of-Service and Experience. The concept of Edge Computing is predicated on moving some of this computational load towards the edge of the network to harness computational capabilities that are currently untapped in edge nodes, such as base stations, routers and switches. This position paper considers the challenges and opportunities that arise out of this new direction in the computing landscape.
Resumo:
Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.
Resumo:
International audience
Resumo:
Field effect devices have been formed in which the active layer is a thin film of poly(3-methylthiophene) grown electrochemically onto preformed source and drain electrodes. Although a field effect is present after electrochemical undoping, stable device characteristics with a high modulation ratio are obtained only after vacuum annealing at an elevated temperature, and only then if the devices are held in vacuo. The polymer is shown to be p type and the devices operate in accumulation only. The hole mobility in devices thermally annealed under vacuum is around 10 -3 cm 2 V -1 s -1. On exposure to ambient laboratory air, the device conductance increases by several orders of magnitude. This increase may be reversed by subjecting the device to a further high-temperature anneal under vacuum. Subsidiary experiments show that these effects are caused by the reversible doping of the polymer by gaseous oxygen.
Resumo:
Field effect devices have been formed in which the active layer is a thin film of poly(3-methylthiophene) grown electrochemically onto preformed source and drain electrodes. Although a field effect is present after electrochemical undoping, stable device characteristics with a high modulation ratio are obtained only after vacuum annealing at an elevated temperature, and only then if the devices are held in vacuo. The polymer is shown to be p type and the devices operate in accumulation only. The hole mobility in devices thermally annealed under vacuum is around 10 -3 cm 2 V -1 s -1. On exposure to ambient laboratory air, the device conductance increases by several orders of magnitude. This increase may be reversed by subjecting the device to a further high-temperature anneal under vacuum. Subsidiary experiments show that these effects are caused by the reversible doping of the polymer by gaseous oxygen.
Resumo:
This thesis contributes to the knowledge of temperate rocky shore ecology, with direct implications in the management and conservation of two important local marine resources that inhabit the very edge of subtidal and intertidal habitats on wave-swept rocky shores: the sessile filter feeding stalked barnacle Pollicipes pollicipes and the mobile keystone herbivore sea urchin Paracentrotus lividus. Research was conducted along gradients of wave exposure on rocky shores of Southern Europe. The abundance of P. lividus was four times higher in SW Portugal than in NW Italy. Most of the variation in urchin abundance occurred at small spatial scales, probably shaped by habitat complexity. In SW Portugal, sea urchin attachment forces while in burrows were measured and related to burrow shape, urchin size and habitat. Burrowing behaviour enhances sea urchin attachment force and might be an adaptive response to hydrodynamic stress. Abundance of P. pollicipes in SW Portugal is highly and positively related to wave exposure at local and regional scales. Predation and recruitment processes seem to be important drivers of these abundance patterns. A distribution model of P. pollicipes abundance in relation to wave exposure was developed for the SW coast of Portugal and might be used for improvement of its management and conservation. Growth of P. pollicipes was studied by applying a novel method using fluorescent calcein for marking and to estimate growth. Growth rate decreased with barnacle size and was highly variable amongst individuals, particularly in smaller barnacles. No effect of shore level on barnacle growth was detected. An assessment of the state of the fishery, conservation and management of the stalked barnacle in different regions of continental Portugal was made, highlighting an overall negative tendency of this state and recommending a change into a co-management system; Resumo: Viver no limite intertidal / subtidal: ecologia do percebe Pollicipes pollicipes e do ouriço-do-mar Paracentrotus lividus Esta tese contribui para o conhecimento da ecologia do litoral rochoso e tem implicações diretas na gestão e conservação de dois recursos marinhos locais que habitam o interface subtidal/intertidal de costas rochosas sujeitas a agitação marinha: o percebe Pollicipes pollicipes, animal séssil e filtrador e o ouriço-do-mar Paracentrotus lividus, animal móvel e herbívoro. Foram realizados vários estudos ao longo de gradientes de hidrodinamismo em costas rochosas do sul da Europa. A abundância de P. lividus foi quatro vezes superior no sudoeste de Portugal relativamente ao noroeste de Itália. Grande parte da variação na abundância de P. lividus ocorreu a pequenas escalas espaciais, provavelmente influenciada pela complexidade do habitat. A força com que o ouriço-do-mar se fixa ao substrato foi medida no terreno no sudoeste de Portugal, tendo esta sido relacionada com a forma da depressão que ocupa, o tamanho individual e o habitat. O comportamento escavador desta espécie aumenta a sua força de fixação ao substrato e poderá ser uma resposta adaptativa ao hidrodinamismo.. A abundância de P. pollicipes na costa sudoeste de Portugal, a diferentes escalas espaciais, está relacionada de forma positiva com a agitação marinha, e é influenciada pela predação e pelo recrutamento desta espécie. Foi desenvolvido um modelo de distribuição e abundância de P. pollicipes para esta costa baseado na relação com a agitação marinha, cujos resultados podem ser usados para melhorar a gestão e conservação deste recurso. Um novo método com recurso a calceina fluorescente foi desenvolvido para marcar percebes e estudar o seu crescimento. A taxa de crescimento diminuiu com o tamanho do animal, sendo altamente variável entre indivíduos, sobretudos nos de menores dimensões. O estado da apanha, conservação e gestão do percebe em diferentes regiões de Portugal Continental apresentou uma tendência global negativa, e recomenda-se uma alteração para um sistema de cogestão deste recurso.