981 resultados para EQUILIBRIUM PROPERTIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the local equilibrium assumption for interfaces from the perspective of gauge transformations, which are the small displacements of Gibbs' dividing surface. The gauge invariance of thermodynamic properties turns out to be equivalent to conditions for jumps of bulk densities across the interface. This insight strengthens the foundations of the local equilibrium assumption for interfaces and can be used to characterize nonequilibrium interfaces in a compact and consistent way, with a clear focus on gauge-invariant properties. Using the principle of gauge invariance, we show that the validity of Clapeyron equations can be extended to nonequilibrium interfaces, and an additional jump condition for the momentum density is recognized to be of the Clapeyron type. © 2012 Europhysics Letters Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure, mechanical properties and electronic structure of ground state BeH2 are calculated employing the first-principles methods based on the density functional theory. Our calculated structural parameters at equilibrium volume are well consistent with experimental results. Elastic constants, which well obey the mechanical stability criteria, are firstly theoretically acquired. The bulk modulus B, Shear modulus G, Young's modulus E, and Poisson's ratio upsilon are deduced from the elastic constants. The bonding nature in BeH2 is fully interpreted by combining characteristics in band structure, density of states, and charge distribution. The ionicity in the Be-H bond is mainly featured by charge transfer from Be 2s to H 1s atomic orbitals while its covalency is dominated by the hybridization of H 1s and Be 2p states. The Bader analysis of BeH2 and MgH2 are performed to describe the ionic/covalent character quantitatively and we find that about 1.61 (1.6) electrons transfer from each Be (Mg) atom to H atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform first-principles calculations of the structural, electronic, mechanical, and thermodynamic properties of thorium hydrides (ThH2 and Th4H15) based on the density functional theory with generalized gradient approximation. The equilibrium geometries, the total and partial densities of states, charge density, elastic constants, elastic moduli, Poisson's ratio, and phonon dispersion curves for these materials are systematically investigated and analyzed in comparison with experiments and previous calculations. These results show that our calculated equilibrium structural parameters are well consistent with experiments. The Th-H bonds in all thorium hydrides exhibit weak covalent character, but the ionic properties for ThH2 and Th4H15 are different due to their different hydrogen concentration. It is found that while in ThH2 about 1.5 electrons transfer from each Th atom to H, in Th4H15 the charge transfer from each Th atom is around 2.1 electrons. Our calculated phonon spectrum for the stable body-centered tetragonal phase of ThH2 accords well with experiments. In addition we show that ThH2 in the fluorite phase is mechanically and dynamically unstable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (C-11, C-12, and C-44), bulk modules B and its pressure derivatives B', compressibility beta, shear modulus G, Young's modulus Y, Poisson's ratio nu, and Lame constants (mu, lambda) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and 0 atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The difference in electrostatics and reduction potentials between manganese ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP) and manganese meta-tetrakis(N-ethylpyridinium-3-yl)porphyrin (MnTE-3-PyP) is a challenging topic, particularly because of the high likelihood for their clinical development. Hence, a detailed study of the protolytic and electrochemical speciation of Mn(II-IV)TE-2-PyP and Mn(II-IV)TE-3-PyP in a broad pH range has been performed using the combined spectrophotometric and potentiometric methods. The results reveal that in aqueous solutions within the pH range ∼2-13 the following species exist: (H(2)O)Mn(II)TE-m-PyP(4+), (HO)Mn(II)TE-m-PyP(3+), (H(2)O)(2)Mn(III)TE-m-PyP(5+), (HO)(H(2)O)Mn(III)TE-m-PyP(4+), (O)(H(2)O)Mn(III)TE-m-PyP(3+), (O)(H(2)O)Mn(IV)TE-m-PyP(4+) and (O)(HO)Mn(IV)TE-m-PyP(3+) (m = 2, 3). All the protolytic equilibrium constants that include the accessible species as well as the thermodynamic parameters for each particular protolytic equilibrium have been determined. The corresponding formal reduction potentials related to the reduction of the above species and the thermodynamic parameters describing the accessible reduction couples were calculated as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 µg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 µg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution 1H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Austenitization with lower temperature and intercritical annealing were introduced in the treatment of a maraging steel with a composition of Fe–12.94Ni–1.61Al–1.01Mo–0.23Nb (wt.%). Scanning electron microscopy was employed to study the microstructure after austenitization at 950 °C and intercritical annealing, followed by aging at 485 and 600 °C. X-ray diffraction (XRD) analysis was applied to evaluate the formation of retained or reverted austenite. Thermodynamic calculation was employed to calculate equilibrium phase mole fractions. Hardness and Charpy impact toughness of the steel were measured. Intercritical annealing treatments did not result in significant increase of hardness either before or after aging. The Charpy impact toughness of the alloy in aged condition was enhanced after austenitization at 950 °C. No austenite was observed in XRD. However, suspected reverted austenite was found after austenitization at 950 °C followed by aging at 600 °C for 4 h. Relationships among heat treatment, microstructure and mechanical properties are discussed.