980 resultados para ENVIRONMENTAL APPLICATIONS
Resumo:
This dissertation is about the research carried on developing an MPS (Multipurpose Portable System) which consists of an instrument and many accessories. The instrument is portable, hand-held, and rechargeable battery operated, and it measures temperature, absorbance, and concentration of samples by using optical principles. The system also performs auxiliary functions like incubation and mixing. This system can be used in environmental, industrial, and medical applications. ^ Research emphasis is on system modularity, easy configuration, accuracy of measurements, power management schemes, reliability, low cost, computer interface, and networking. The instrument can send the data to a computer for data analysis and presentation, or to a printer. ^ This dissertation includes the presentation of a full working system. This involved integration of hardware and firmware for the micro-controller in assembly language, software in C and other application modules. ^ The instrument contains the Optics, Transimpedance Amplifiers, Voltage-to-Frequency Converters, LCD display, Lamp Driver, Battery Charger, Battery Manager, Timer, Interface Port, and Micro-controller. ^ The accessories are a Printer, Data Acquisition Adapter (to transfer the measurements to a computer via the Printer Port and expand the Analog/Digital conversion capability), Car Plug Adapter, and AC Transformer. This system has been fully evaluated for fault tolerance and the schemes will also be presented. ^
Resumo:
The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^
Resumo:
Nanomaterials are nowadays widely recognised as advantageous sensing tools due to their unique properties. Some natural nanomaterials, such as DNA or hyaluronic acid analysed in this PhD thesis, have an intrinsic biocompatibility that overcomes a series of issues in the field of sensing in biological environments. Therefore, the main aim of this project was to derivatize HA chains with luminescent dyes - both organic and metal complexes - in order to obtain natural polymer-based optical sensors. A derivatization of HA with these moieties was obtained and a photophysical characterization was provided. To prove their sensing ability towards nanomaterials, the interaction with. PluS Nanoparticles, featuring an outer PEG shell, was tested. It was mostly demonstrated that the main features of the luminophores used were present in the HA nanogels as well. For example, HA@Dansyl was proven to be a luminescent probe able to sense different environment polarities. Furthermore, in HA@PA the amount of excimers/monomers emission was found to be relatable to the degree of entanglement of HA chains, that changes upon interactions with nanoparticles. Moreover, two ruthenium bipyridyl derivatives were linked to HA and it was found out that HA interacts with long DNA sequences. Also, the presence of BPA, a small molecule of environmental concern, was detected using (i) an already studied hyaluronic acid derivative with rhodamine (HA@RB) , (ii) a dizinc ruthenium complex coordinating BPA to the metal centres, and (iii) a new probe constituted by PluSNPs@DEAC and HA@RB. Despite all the systems were found to be able to detect BPA, the latter probe presented advantages in terms of sensitivity. Furthermore, the chapter 2 of this thesis is focused on the detection of a NF-κB protein in PC3 cancer cells. via confocal microscopy by following a FRET signal variation on a triplex-hairpin derivatized with a FRET couple of dyes.
Resumo:
This thesis is based on two studies that are related to floating wave energy conversion (WEC) devices and turbulent fountains. The ability of the open-source CFD software OpenFOAM® has been studied to simulate these phenomena. The CFD model has been compared with the physical experimental results. The first study presents a model of a WEC device, called MoonWEC, which is patented by the University of Bologna. The CFD model of the MoonWEC under the action of waves has been simulated using OpenFOAM and the results are promising. The reliability of the CFD model is confirmed by the laboratory experiments, conducted at the University of Bologna, for which a small-scale prototype of the MoonWEC was made from wood and brass. The second part of the thesis is related to the turbulent fountains which are formed when a heavier source fluid is injected upward into a lighter ambient fluid, or else a lighter source fluid is injected downward into a heavier ambient fluid. For this study, the first case is considered for laboratory experiments and the corresponding CFD model. The vertical releases of the source fluids into a quiescent, uniform ambient fluid, from a circular source, were studied with different densities in the laboratory experiments, conducted at the University of Parma. The CFD model has been set up for these experiments. Favourable results have been observed from the OpenFOAM simulations for the turbulent fountains as well, indicating that it can be a reliable tool for the simulation of such phenomena.
Resumo:
Although its great potential as low to medium temperature waste heat recovery (WHR) solution, the ORC technology presents open challenges that still prevent its diffusion in the market, which are different depending on the application and the size at stake. Focusing on the micro range power size and low temperature heat sources, the ORC technology is still not mature due to the lack of appropriate machines and working fluids. Considering instead the medium to large size, the technology is already available but the investment is still risky. The intention of this thesis is to address some of the topical themes in the ORC field, paying special attention in the development of reliable models based on realistic data and accounting for the off-design performance of the ORC system and of each of its components. Concerning the “Micro-generation” application, this work: i) explores the modelling methodology, the performance and the optimal parameters of reciprocating piston expanders; ii) investigates the performance of such expander and of the whole micro-ORC system when using Hydrofluorocarbons as working fluid or their new low GWP alternatives and mixtures; iii) analyzes the innovative ORC reversible architecture (conceived for the energy storage), its optimal regulation strategy and its potential when inserted in typical small industrial frameworks. Regarding the “Industrial WHR” sector, this thesis examines the WHR opportunity of ORCs, with a focus on the natural gas compressor stations application. This work provides information about all the possible parameters that can influence the optimal sizing, the performance and thus the feasibility of installing an ORC system. New WHR configurations are explored: i) a first one, relying on the replacement of a compressor prime mover with an ORC; ii) a second one, which consists in the use of a supercritical CO2 cycle as heat recovery system.
Resumo:
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.
Resumo:
Efforts presented by the scientific community in recent years towards the development of numerous green chemical processes and wastewater treatment technologies are presented and discussed. In the light of these approaches, environmentally friendly technologies, as well as the key role played by the well-known advanced oxidation processes, are discussed, giving special attention to the ones comprising ozone applications. Fundamentals and applied aspects dealing with ozone technology and its application are also presented.
Resumo:
Technical evaluation of analytical data is of extreme relevance considering it can be used for comparisons with environmental quality standards and decision-making as related to the management of disposal of dredged sediments and the evaluation of salt and brackish water quality in accordance with CONAMA 357/05 Resolution. It is, therefore, essential that the project manager discusses the environmental agency's technical requirements with the laboratory contracted for the follow-up of the analysis underway and even with a view to possible re-analysis when anomalous data are identified. The main technical requirements are: (1) method quantitation limits (QLs) should fall below environmental standards; (2) analyses should be carried out in laboratories whose analytical scope is accredited by the National Institute of Metrology (INMETRO) or qualified or accepted by a licensing agency; (3) chain of custody should be provided in order to ensure sample traceability; (4) control charts should be provided to prove method performance; (5) certified reference material analysis or, if that is not available, matrix spike analysis, should be undertaken and (6) chromatograms should be included in the analytical report. Within this context and with a view to helping environmental managers in analytical report evaluation, this work has as objectives the discussion of the limitations of the application of SW 846 US EPA methods to marine samples, the consequences of having data based on method detection limits (MDL) and not sample quantitation limits (SQL), and present possible modifications of the principal method applied by laboratories in order to comply with environmental quality standards.
Resumo:
We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 degrees C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d(33) coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 degrees C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.
Resumo:
In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on ""smart"" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper reviews the potential use of three types of spatial technology to land managers, namely satellite imagery, satellite positioning systems and supporting computer software. Developments in remote sensing and the relative advantages of multispectral and hyperspectral images are discussed. The main challenge to the wider use of remote sensing as a land management tool is seen as uncertainty whether apparent relationships between biophysical variables and spectral reflectance are direct and causal, or artefacts of particular images. Developments in satellite positioning systems are presented in the context of land managers’ need for position estimates in situations where absolute precision may or may not be required. The role of computer software in supporting developments in spatial technology is described. Spatial technologies are seen as having matured beyond empirical applications to the stage where they are useful and reliable land management tools. In addition, computer software has become more user-friendly and this has facilitated data collection and manipulation by semi-expert as well as specialist staff.
Resumo:
Two major factors are likely to impact the utilisation of remotely sensed data in the near future: (1)an increase in the number and availability of commercial and non-commercial image data sets with a range of spatial, spectral and temporal dimensions, and (2) increased access to image display and analysis software through GIS. A framework was developed to provide an objective approach to selecting remotely sensed data sets for specific environmental monitoring problems. Preliminary applications of the framework have provided successful approaches for monitoring disturbed and restored wetlands in southern California.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Increasing recognition of cultural influences on career development requires expanded theoretical and practical perspectives. Theories of career development need to explicate views of culture and provide direction for career counseling with clients who are culturally diverse. The Systems Theory Framework (STF) is a theoretical foundation that accounts for systems of influence on people's career development, including individual, social, and environmental/societal contexts. The discussion provides a rationale for systemic approaches in multicultural career counseling and introduces the central theoretical tenets of the STF. Through applications of the STF, career counselors are challenged to expand their roles and levels of intervention in multicultural career counseling.
Resumo:
A simple framework was used to analyse the determinants of potential yield of sunflower (Helianthus annuus L.) in a subtropical environment. The aim was to investigate the stability of the determinants crop duration, canopy light interception, radiation use efficiency (RUE), and harvest index (HI) at 2 sowing times and with 3 genotypes differing in crop maturity and stature. Crop growth, phenology, light interception, yield, prevailing temperature, and radiation were recorded and measured throughout the crop cycle. Significant differences in grain yield were found between the 2 sowings, but not among genotypes within each sowing. Mean yields (0% moisture) were 6 . 02 and 2 . 17 t/ha for the first sowing, on 13 September (S1), and the second sowing, on 5 March (S2), respectively. Exceptionally high yields in S1 were due to high biomass assimilation associated with the high radiation environment, high light interception owing to a greater leaf area index, and high RUE (1 . 47-1 . 62 g/MJ) across genotypes. It is proposed that the high RUE was caused by high levels of available nitrogen maintained during crop growth by frequent applications of fertiliser and sewage effluent as irrigation. In addition to differences in the radiation environment, the assimilate partitioned to grain was reduced in S2 associated with a reduction in the duration of grain-filling. Harvest index was 0 . 40 in S1 and 0 . 25 in S2. It is hypothesised that low minimum temperatures experienced in S2 reduced assimilate production and partitioning, causing premature maturation.