422 resultados para ENSO
Resumo:
Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.
Resumo:
The Australian region spans some 60° of latitude and 50° of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 ± 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Niño-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 ± 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Niño-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.
Resumo:
High-precision analysis using accelerator mass spectrometry (AMS) was performed upon known-age Holocene and modern, pre-bomb coral samples to generate a marine reservoir age correction value (ΔR) for the Houtman-Abrolhos Archipelago (28.7°S, 113.8°E) off the Western Australian coast. The mean ΔR value calculated for the Abrolhos Islands, 54 ± 30 yr (1σ) agrees well with regional ΔR values for Leeuwin Current source waters (N-NW Australia-Java) of 60 ± 38. The Abrolhos Islands show little variation with ΔR values of the northwestern and north Australian coast, underlining the dominance of the more equilibrated western Pacific-derived waters of the Leeuwin Current over local upwelling. The Abrolhos Islands ΔR values have remained stable over the last 2896 yr cal BP, being also attributed to the Leeuwin Current and the El Niño Southern Oscillation (ENSO) signal during this period. Expected future trends will be a strengthening of the teleconnection of the Abrolhos Islands to the climatic patterns of the equatorial Pacific via enhanced ENSO and global warming activity strengthening the Leeuwin Current. The possible effect upon the trend of future ΔR values may be to maintain similar values and an increase in stability. However, warming trends of global climate change may cause increasing dissimilarity of ΔR values due to the effects of increasing heat stress upon lower-latitude coral communities.
Resumo:
Several fringing coral reefs in Moreton Bay, Southeast Queensland, some 300 km south of the Great Barrier Reef (GBR), are set in a relatively high latitude, estuarine environment that is considered marginal for coral growth. Previous work indicated that these marginal reefs, as with many fringing reefs of the inner GBR, ceased accreting in the mid-Holocene. This research presents for the first time data from the subsurface profile of the mid-Holocene fossil reef at Wellington Point comprising U/Th dates of in situ and framework corals, and trace element analysis from the age constrained carbonate fragments. Based on trace element proxies the palaeo-water quality during reef accretion was reconstructed. Results demonstrate that the reef initiated more than 7,000 yr BP during the post glacial transgression, and the initiation progressed to the west as sea level rose. In situ micro-atolls indicate that sea level was at least 1 m above present mean sea level by 6,680 years ago. The reef remained in "catch-up" mode, with a seaward sloping upper surface, until it stopped aggrading abruptly at ca 6,000 yr BP; no lateral progradation occurred. Changes in sediment composition encountered in the cores suggest that after the laterite substrate was covered by the reef, most of the sediment was produced by the carbonate factory with minimal terrigenous influence. Rare earth element, Y and Ba proxies indicate that water quality during reef accretion was similar to oceanic waters, considered suitable for coral growth. A slight decline in water quality on the basis of increased Ba in the later stages of growth may be related to increased riverine input and partial closing up of the bay due to either tidal delta progradation, climatic change and/or slight sea level fall. The age data suggest that termination of reef growth coincided with a slight lowering of sea level, activation of ENSO and consequent increase in seasonality, lowering of temperatures and the constrictions to oceanic flushing. At the cessation of reef accretion the environmental conditions in the western Moreton Bay were changing from open marine to estuarine. The living coral community appears to be similar to the fossil community, but without the branching Acropora spp. that were more common in the fossil reef. In this marginal setting coral growth periods do not always correspond to periods of reef accretion due to insufficient coral abundance. Due to several environmental constraints modern coral growth is insufficient for reef growth. Based on these findings Moreton Bay may be unsuitable as a long term coral refuge for most species currently living in the GBR.
Resumo:
In this study, the nature of basin-scale hydroclimatic association for Indian subcontinent is investigated. It is found that, the large-scale circulation information from Indian Ocean is also equally important in addition to the El Nino-Southern Oscillation (ENSO), owing to the geographical location of Indian subcontinent. The hydroclimatic association of the variation of monsoon inflow into the Hirakud reservoir in India is investigated using ENSO and EQUatorial INdian Ocean Oscillation (EQUINOO, the atmospheric part of Indian Ocean Dipole mode) as the large-scale circulation information from tropical Pacific Ocean and Indian Ocean regions respectively. Individual associations of ENSO & EQUINOO indices with inflow into Hirakud reservoir are also assessed and found to be weak. However, the association of inflows into Hirakud reservoir with the composite index (CI) of ENSO and EQUINOO is quite strong. Thus, the large-scale circulation information from Indian Ocean is also important apart form the ENSO. The potential of the combined information of ENSO and EQUINOO for predicting the inflows during monsoon is also investigated with promising results. The results of this study will be helpful to water resources managers due to fact that the nature of monsoon inflow is becoming available as an early prediction.
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
We present here the first statistically calibrated and verified tree-ring reconstruction of climate from continental Southeast Asia.The reconstructed variable is March-May (MAM) Palmer Drought Severity Index (PDSI) based on ring widths from 22 trees (42 radial cores) of rare and long-lived conifer, Fokienia hodginsii (Po Mu as locally called) from northern Vietnam. This is the first published tree ring chronology from Vietnam as well as the first for this species. Spanning 535 years, this is the longest cross-dated tree-ring series yet produced from continental Southeast Asia. Response analysis revealed that the annual growth of Fokienia at this site was mostly governed by soil moisture in the pre-monsoon season. The reconstruction passed the calibration-verification tests commonly used in dendroclimatology, and revealed two prominent periods of drought in the mid-eighteenth and late-nineteenth enturies. The former lasted nearly 30 years and was concurrent with a similar drought over northwestern Thailand inferred from teak rings, suggesting a ``mega-drought'' extending across Indochina in the eighteenth century. Both of our reconstructed droughts are consistent with the periods of warm sea surface temperature (SST)anomalies in the tropical Pacific. Spatial correlation analyses with global SST indicated that ENSO-like anomalies might play a role in modulating droughts over the region, with El Nio (warm) phases resulting in reduced rainfall. However, significant correlation was also seen with SST over the Indian Ocean and the north Pacific,suggesting that ENSO is not the only factor affecting the climate of the area. Spectral analyses revealed significant peaks in the range of 53.9-78.8 years as well as in the ENSO-variability range of 2.0 to 3.2 years.
Resumo:
Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.
Resumo:
Tässä pro gradu -tutkielmassa selvitetään suomalaisten pörssiyritysten ympäristöasenteita. Asenteella tarkoitetaan suhteellisen pysyvää arviota tai toimintavalmiutta suhteessa ympäristöön. Lähtökohtaoletuksena on, että yrityksen perustehtävä on voiton tuottaminen osakkeenomistajille ja erilaisten sidosryhmien hyödyttäminen. Lähdeaineistona ovat yritysten yhteiskuntavastuu- ja ympäristöraportit, jotka on valittu OMX:n pohjoismaisen pörssin listalta niiden yritysten joukosta, joiden kotipaikka on Suomessa, jotka edustavat energian, perusteollisuuden ja yhdyskuntapalveluiden toimialaryhmää, ja jotka ovat julkaisseet erillisen ympäristö- tai yhteiskuntavastuuraportin. Tällaisia yrityksiä ovat Neste Oil, Fortum, Kemira, Outokumpu, Rautaruukki, M-real, Stora Enso ja UPM. Tutkimusmetodina on systemaattinen analyysi, jolla tarkoitetaan käsitteiden ja argumentaation analyysiä sekä johtopäätösten tekemistä analyysin pohjalta. Tutkimuskysymyksiä on kolme: Minkälaisia ympäristöasenteita lähteinä olevat suomalaisten pörssiyritysten ympäristö- ja yhteiskuntavastuuraportit sisältävät? Mitkä tekijät vaikuttavat tutkimuskohteena olevien yritysten ympäristöasenteisiin lähteiden perusteella? Millaisia toimintavalmiuksia yritysten ympäristöasenteet sisältävät lähteiden perusteella? Tutkielma jakaantuu johdannon, taustaluvun ja loppukatsauksen lisäksi kolmeen päälukuun. Taustaluvussa esitellään ihmis-, tekniikka- ja luontokeskeinen ympäristöasenne. Tämä kolmijako ja näiden eri asenteiden piirteet muodostavat haravan lähteiden analysoinnille sen selvittämiseksi, millainen asenne tutkimuksen kohteeksi valituilla yrityksillä on ympäristöön. Ensimmäisessä pääluvussa tarkastellaan kestävää kehitystä ja sen periaatteiden noudattamista, luonnonvarojen käyttöä raaka-aineena sekä toiminnalle asetettuja tavoitteita ja asiakkaiden toiveisiin vastaamista. Yritykset pyrkivät suojelemaan luontoa tuleville sukupolville, kehittämään ympäristömyötäisempiä tuotteita, käyttämään luonnonvaroja kestävästi ja hallitsemaan päästöjen ja jätteiden syntymistä teknisillä ratkaisuilla ja kierrätyksellä. Toisessa pääluvussa tarkastellaan taloudellisen menestyksen ja ympäristön hallinnan vaikutusta yritysten ympäristöasenteisiin. Asenteisiin vaikuttavat taloudellisen menestyksen saavuttaminen, hiilidioksidipäästöjen vähentäminen, ympäristöpoliittiset ohjauskeinot ja ympäristöasioiden hallinta. Kolmannessa pääluvussa tarkastellaan yritystoiminnan ympäristövaikutuksia, niiden taustalla olevia asenteita sekä millaisia toimintavalmiuksia asenteet sisältävät. Tällaisia toimintavalmiuksia ovat yritysten osallistuminen ympäristönsuojeluun, yrityksen ympäristövaikutukset sekä yhteistyö ympäristöjärjestöjen kanssa ja ympäristöntutkimus. Yritysten asenne ympäristöön on pääsääntöisesti ihmis- ja tekniikkakeskeinen. Luontokeskeinen asenne ympäristöön tulee raporteissa esille vain harvoin, esimerkiksi kuvattaessa ympäristövaikutuksia ekosysteemin ja luonnon monimuotoisuuden kannalta. Yritysten asenne ympäristöön painottuu tällöinkin ihmis- ja tekniikkakeskeiseksi, sillä ympäristönsuojelun motiivina voi olla vain ympäristöpoliittisiin vaatimuksiin vastaaminen tai yrityskuvan parantaminen.
Resumo:
The annual cycle of rainfall over the Korean Peninsula is marked by two peaks: one during July and the other during August. Since the mid-1970s, the maximum rainfall over the Korean Peninsula has shifted from July to August. This shift in rainfall peak was caused by a significant increase of August rainfall after the mid-1970s. The basic reason for this shift has been traced to a change in teleconnection between El Nino-Southern Oscillation (ENSO) and August rainfall. The relationship between August rainfall over Korea and ENSO changed from 1954-1975 (PI) to 1976-2002 (PII). The variability of August rainfall was significantly associated with sea surface temperature (SST) variation over the eastern equatorial Pacific during PI, but this relationship is absent during the PII period. In El Nino years during PI, low-level westerly and southerly wind anomalies are dominant around the East China Sea, which relates to strong August rainfall. In La Nina years during PI, easterly and northerly wind anomalies are dominant. During the PII period, however, westerly and southerly wind anomalies around the East China Sea were responsible for the high August rainfall over the East Asian region, even though La Nina SST conditions were in effect over the eastern Pacific.
Resumo:
A 50-year tree-ring delta O-18 chronology of Abies spectabilis growing close to the tree line (3850 m asl) in the Nepal Himalaya is established to explore its dendroclimatic potential. Response function analysis with ambient climatic records revealed that tree-ring delta O-18 is primarily governed by rainfall during the monsoon season (June September), and the regression model accounts for 35% of the variance in rainfall. Extreme dry years identified in instrumental weather data are detected in the delta O-18 chronology. Further, tree-ring delta O-18 is much more sensitive to rainfall fluctuations than other tree-ring parameters such as width and density typically used in dendroclimatology. Correlation analyses with Nino 3.4 SST reveal time-dependent behavior of ENSO-monsoon relationships. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, we suggest criteria for the identification of active and break events of the Indian summer monsoon on the basis of recently derived high resolution daily gridded rainfall dataset over India (1951-2007). Active and break events are defined as periods during the peak monsoon months of July and August, in which the normalized anomaly of the rainfall over a critical area, called the monsoon core zone exceeds 1 or is less than -1.0 respectively, provided the criterion is satisfied for at least three consecutive days. We elucidate the major features of these events. We consider very briefly the relationship of the intraseasonal fluctuations between these events and the interannual variation of the summer monsoon rainfall. We find that breaks tend to have a longer life-span than active spells.While, almost 80% of the active spells lasted 3-4 days, only 40% of the break spells were of such short duration. A small fraction (9%) of active spells and 32% of break spells lasted for a week or longer. While active events occurred almost every year, not a single break occurred in 26% of the years considered. On an average, there are 7 days of active and break events from July through August. There are no significant trends in either the days of active or break events. We have shown that there is a major difference between weak spells and long intense breaks. While weak spells are characterized by weak moist convective regimes, long intense break events have a heat trough type circulation which is similar to the circulation over the Indian subcontinent before the onset of the monsoon. The space-time evolution of the rainfall composite patterns suggests that the revival from breaks occurs primarily from northward propagations of the convective cloud zone. There are important differences between the spatial patterns of the active/break spells and those characteristic of interannual variation, particularly those associated with the link to ENSO. Hence, the interannual variation of the Indian monsoon cannot be considered as primarily arising from the interannual variation of intraseasonal variation. However, the signature over the eastern equatorial Indian Ocean on intraseasonal time scales is similar to that on the interannual time scales.
Resumo:
The Indian summer monsoon season of 2009 commenced with a massive deficit in all-India rainfall of 48% of the average rainfall in June. The all-India rainfall in July was close to the normal but that in August was deficit by 27%. In this paper, we first focus on June 2009, elucidating the special features and attempting to identify the factors that could have led to the large deficit in rainfall. In June 2009, the phase of the two important modes, viz., El Nino and Southern Oscillation (ENSO) and the equatorial Indian Ocean Oscillation (EQUINOO) was unfavourable. Also, the eastern equatorial Indian Ocean (EEIO) was warmer than in other years and much warmer than the Bay. In almost all the years, the opposite is true, i.e., the Bay is warmer than EEIO in June. It appears that this SST gradient gave an edge to the tropical convergence zone over the eastern equatorial Indian Ocean, in competition with the organized convection over the Bay. Thus, convection was not sustained for more than three or four days over the Bay and no northward propagations occurred. We suggest that the reversal of the sea surface temperature (SST) gradient between the Bay of Bengal and EEIO, played a critical role in the rainfall deficit over the Bay and hence the Indian region. We also suggest that suppression of convection over EEIO in association with the El Nino led to a positive phase of EQUINOO in July and hence revival of the monsoon despite the El Nino. It appears that the transition to a negative phase of EQUINOO in August and the associated large deficit in monsoon rainfall can also be attributed to the El Nino.
Resumo:
Corporate Social Responsibility (CSR) has become increasingly important topic in forest industries, and other global companies, in recent years. Globalisation, faster information delivery and demand for sustainable development have set new challenges for global companies in their business operations. Also the importance of stakeholder relations, and pressure to become more transparent has increased in the forest industries. Three dimensions of corporate responsibility economic, environmental and social, are often included in the concept of CSR. Global companies mostly claim that these dimensions are equally important. This study analyses CSR in forest industry and has focus on reporting and implementation of social responsibility in three international companies. These case-companies are Stora Enso, SCA and Sappi, and they have different geographical base, product portfolios and therefore present interesting differences about forest industry strategy and CSR. Global Reporting Initiative (GRI) has created the most known and used reporting framework in CSR reporting. GRI Guidelines have made CSR reporting a uniform function, which can also be measured between companies and different sectors. GRI Guidelines have also made it possible to record and control CSR data in the companies. In recent years the use of GRI Guidelines has increased substantially. Typically CSR reporting on economic and environmental responsibility have been systematic in the global companies and often driven by legistlation and other regulations. However the social responsibility has been less regulated and more difficult to compare. Therefore it has previously been often less focused in the CSR reporting of the global companies. The implementation and use of GRI Guidelines have also increased dialogue on social responsibility issues and stakeholder management in global companies. This study analyses the use of GRI´s framework in the forest industry companies´ CSR reporting. This is a qualitative study and the disclosure of data is empricially analysed using content analysis. Content analysis has been selected as a method for this study because it makes it possible to use different sources of information. The data of this study consists of existing academic literature of CSR, sustainability reports of thecase-companies during 2005-2009, and the semi-structured interviews with company representatives. Different sources provide the possibility to look at specific subject from more than one viewpoint. The results of the study show that all case-companies have relatively common themes in their CSR disclosure, and the differences rise mainly from their product-portfolios, and geographic base. Social impacts to local communities, in the CSR of the companies, were mainly dominated by issues concerning creating wealth to the society and impacting communities through creation of work. The comparability of the CSR reporting, and especially social indicators increased significally from 2007 onwards in all case-companies. Even though the companies claim that three dimensions of CSR economic, environmental and social are equally important economic issues and profit improvement still seem to drive most of the operations in the global companies. Many issues that are covered by laws and regulations are still essentially presented as social responsibility in CSR. However often the unwelcome issues in companies like closing operations are covered just briefly, and without adequate explanation. To make social responsibility equally important in the CSR it would demand more emphasis from all the case-companies. A lot of emphasis should be put especially on the detail and extensiveness of the social reponsibility content in the CSR.
Resumo:
The role of convergence feedback on the stability of a coupled ocean‐atmosphere system is studied using model III of Hirst (1986). It is shown that the unstable coupled mode found by Hirst is greatly modified by the convergence feedback. If the convergence feedback strength exceeds a critical value, several new unstable intraseasonal modes are also introduced. These modes have very weak dependence on the wave number. These results may explain the behaviour of some coupled models and to some extent provide a mechanism for the observed aperiodicity of the El‐Nino and Southern Oscillation (ENSO) events.