881 resultados para ENERGY-METABOLISM
Resumo:
BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11beta-HSD1 activity has to be considered for understanding both glucocorticoid and neurosteroid action in different tissues.
Resumo:
Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
Exercise is making a resurgence in many countries, given its benefits for fitness as well as prevention of obesity. This trend has spawned many supplements that purport to aid performance, muscle growth, and recovery. Initially, sports drinks were developed to provide electrolyte and carbohydrate replacement. Subsequently, energy beverages (EBs) containing stimulants and additives have appeared in most gyms and grocery stores and are being used increasingly by "weekend warriors" and those seeking an edge in an endurance event. Long-term exposure to the various components of EBs may result in significant alterations in the cardiovascular system, and the safety of EBs has not been fully established. For this review, we searched the MEDLINE and EMBASE databases from 1976 through May 2010, using the following keywords: energy beverage, energy drink, power drink, exercise, caffeine, red bull, bitter orange, glucose, ginseng, guarana, and taurine. Evidence regarding the effects of EBs is summarized, and practical recommendations are made to help in answering the patient who asks, "Is it safe for me to drink an energy beverage when I exercise?"
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.
Resumo:
Peer reviewed
Resumo:
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.
Resumo:
Although the gene defect responsible for Huntington disease (HD) has recently been identified, the pathogenesis of the disease remains obscure. One potential mechanism is that the gene defect may lead to an impairment of energy metabolism followed by slow excitotoxic neuronal injury. In the present study we examined whether chronic administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, can replicate the neuropathologic and clinical features of HD in nonhuman primates. After 3-6 weeks of 3-NP administration, apomorphine treatment induced a significant increase in motor activity as compared with saline-treated controls. Animals showed both choreiform movements, as well as foot and limb dystonia, which are characteristic of HD. More prolonged 3-NP treatment in two additional primates resulted in spontaneous dystonia and dyskinesia accompanied by lesions in the caudate and putamen seen by magnetic resonance imaging. Histologic evaluation showed that there was a depletion of calbindin neurons, astrogliosis, sparing of NADPH-diaphorase neurons, and growth-related proliferative changes in dendrites of spiny neurons similar to changes in HD. The striosomal organization of the striatum and the nucleus accumbens were spared. These findings show that chronic administration of 3-NP to nonhuman primates can replicate many of the characteristic motor and histologic features of HD, further strengthening the possibility that a subtle impairment of energy metabolism may play a role in its pathogenesis.
Resumo:
Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.
Resumo:
Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.
Resumo:
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
Resumo:
Funding This study was supported by the Polish Ministry of Science and Higher Education grant NN304349335 to P.A.S. J.R.S. was supported by a 1000 talents professorship of the Chinese government.