978 resultados para ENERGY ESTIMATES
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.
Resumo:
I developed a new model for estimating annual production-to-biomass ratio P/B and production P of macrobenthic populations in marine and freshwater habitats. Self-learning artificial neural networks (ANN) were used to model the relationships between P/B and twenty easy-to-measure abiotic and biotic parameters in 1252 data sets of population production. Based on log-transformed data, the final predictive model estimates log(P/B) with reasonable accuracy and precision (r2 = 0.801; residual mean square RMS = 0.083). Body mass and water temperature contributed most to the explanatory power of the model. However, as with all least squares models using nonlinearly transformed data, back-transformation to natural scale introduces a bias in the model predictions, i.e., an underestimation of P/B (and P). When estimating production of assemblages of populations by adding up population estimates, accuracy decreases but precision increases with the number of populations in the assemblage.
Resumo:
Estimates show that fossil fuel subsidies average USD 400–600 billion annually worldwide while renewable energy (RE) subsidies amounted to USD 66 billion in 2010 and are predicted to rise to USD 250 billion annually by 2035. Domestic political rationales for energy subsidies include promoting innovation, job creation and economic growth, energy security, and independence. Energy subsidies may also serve social and environmental goals. Whether and to what extent subsidies are effective to achieve these goals or instead lead to market distortions is a matter of much debate and the trade effects of energy subsidies are complex. This paper offers an overview of the types of energy subsidies that are used in the conventional and renewable energy sectors, and their relationship with climate change, in particular greenhouse gas emissions. While the WTO’s Agreement on Subsidies and Countervailing Measures (ASCM) is mostly concerned with harm to competitors, this paper considers the extent to which the Agreement could also discipline subsidies that cause harm to the environment as a global common. Beyond the existing legal framework, this paper surveys a number of alternatives for improving the ability of subsidies disciplines to internalize climate change costs of energy production and consumption. One option is a new multilateral agreement on subsidies or trade remedies (with an appropriate carve-out in the WTO regime to allow for it if such an agreement is concluded outside it). Alternatively, climate change-related subsidies could be included as part of another multilateral regime or as part of regional agreements. A third approach would be to incorporate rules on energy subsidies in sectorial agreements, including a Sustainable Energy Trade Agreement such as has been proposed in other ICTSD studies.
Resumo:
Improving energy efficiency is an unarguable emergent issue in developing economies and an energy efficiency standard and labeling program is an ideal mechanism to achieve this target. However, there is concern regarding whether the consumers will choose the highly energy efficient appliances because of its high price in consequence of the high cost. This paper estimates how the consumer responds to introduction of the energy efficiency standard and labeling program in China. To quantify evaluation by consumers, we estimated their consumer surplus and the benefits of products based on the estimated parameters of demand function. We found the following points. First, evaluation of energy efficiency labeling by the consumer is not monotonically correlated with the number of grades. The highest efficiency label (Label 1) is not evaluated to be no less higher than labels 2 and 3, and is sometimes lower than the least energy efficient label (Label UI). This goes against the design of policy intervention. Second, several governmental policies affects in mixed directions: the subsidies for energy saving policies to the highest degree of the labels contribute to expanding consumer welfare as the program was designed. However, the replacement for new appliances policies decreased the welfare.
Resumo:
This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.
Resumo:
Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CPESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U?Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TR_EVOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of scenarios and breakdown of LCOE contributors rather than provision of absolute values, as technological readiness levels are low for most of the advanced fuel cycle stages. The obtained estimations show an increase of LCOE ? averaged over the whole period ? with respect to the reference open cycle scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios. The main contribution to LCOE is the capital costs of new facilities, quantified between 60% and 69% depending on the scenario. An uncertainty analysis is provided around assumed low and high values of processes and technologies.
Resumo:
Resource analysis aims at inferring the cost of executing programs for any possible input, in terms of a given resource, such as the traditional execution steps, time ormemory, and, more recently energy consumption or user defined resources (e.g., number of bits sent over a socket, number of database accesses, number of calls to particular procedures, etc.). This is performed statically, i.e., without actually running the programs. Resource usage information is useful for a variety of optimization and verification applications, as well as for guiding software design. For example, programmers can use such information to choose different algorithmic solutions to a problem; program transformation systems can use cost information to choose between alternative transformations; parallelizing compilers can use cost estimates for granularity control, which tries to balance the overheads of task creation and manipulation against the benefits of parallelization. In this thesis we have significatively improved an existing prototype implementation for resource usage analysis based on abstract interpretation, addressing a number of relevant challenges and overcoming many limitations it presented. The goal of that prototype was to show the viability of casting the resource analysis as an abstract domain, and howit could overcome important limitations of the state-of-the-art resource usage analysis tools. For this purpose, it was implemented as an abstract domain in the abstract interpretation framework of the CiaoPP system, PLAI.We have improved both the design and implementation of the prototype, for eventually allowing an evolution of the tool to the industrial application level. The abstract operations of such tool heavily depend on the setting up and finding closed-form solutions of recurrence relations representing the resource usage behavior of program components and the whole program as well. While there exist many tools, such as Computer Algebra Systems (CAS) and libraries able to find closed-form solutions for some types of recurrences, none of them alone is able to handle all the types of recurrences arising during program analysis. In addition, there are some types of recurrences that cannot be solved by any existing tool. This clearly constitutes a bottleneck for this kind of resource usage analysis. Thus, one of the major challenges we have addressed in this thesis is the design and development of a novel modular framework for solving recurrence relations, able to combine and take advantage of the results of existing solvers. Additionally, we have developed and integrated into our novel solver a technique for finding upper-bound closed-form solutions of a special class of recurrence relations that arise during the analysis of programs with accumulating parameters. Finally, we have integrated the improved resource analysis into the CiaoPP general framework for resource usage verification, and specialized the framework for verifying energy consumption specifications of embedded imperative programs in a real application, showing the usefulness and practicality of the resulting tool.---ABSTRACT---El Análisis de recursos tiene como objetivo inferir el coste de la ejecución de programas para cualquier entrada posible, en términos de algún recurso determinado, como pasos de ejecución, tiempo o memoria, y, más recientemente, el consumo de energía o recursos definidos por el usuario (por ejemplo, número de bits enviados a través de un socket, el número de accesos a una base de datos, cantidad de llamadas a determinados procedimientos, etc.). Ello se realiza estáticamente, es decir, sin necesidad de ejecutar los programas. La información sobre el uso de recursos resulta muy útil para una gran variedad de aplicaciones de optimización y verificación de programas, así como para asistir en el diseño de los mismos. Por ejemplo, los programadores pueden utilizar dicha información para elegir diferentes soluciones algorítmicas a un problema; los sistemas de transformación de programas pueden utilizar la información de coste para elegir entre transformaciones alternativas; los compiladores paralelizantes pueden utilizar las estimaciones de coste para realizar control de granularidad, el cual trata de equilibrar el coste debido a la creación y gestión de tareas, con los beneficios de la paralelización. En esta tesis hemos mejorado de manera significativa la implementación de un prototipo existente para el análisis del uso de recursos basado en interpretación abstracta, abordando diversos desafíos relevantes y superando numerosas limitaciones que éste presentaba. El objetivo de dicho prototipo era mostrar la viabilidad de definir el análisis de recursos como un dominio abstracto, y cómo se podían superar las limitaciones de otras herramientas similares que constituyen el estado del arte. Para ello, se implementó como un dominio abstracto en el marco de interpretación abstracta presente en el sistema CiaoPP, PLAI. Hemos mejorado tanto el diseño como la implementación del mencionado prototipo para posibilitar su evolución hacia una herramienta utilizable en el ámbito industrial. Las operaciones abstractas de dicha herramienta dependen en gran medida de la generación, y posterior búsqueda de soluciones en forma cerrada, de relaciones recurrentes, las cuales modelizan el comportamiento, respecto al consumo de recursos, de los componentes del programa y del programa completo. Si bien existen actualmente muchas herramientas capaces de encontrar soluciones en forma cerrada para ciertos tipos de recurrencias, tales como Sistemas de Computación Algebraicos (CAS) y librerías de programación, ninguna de dichas herramientas es capaz de tratar, por sí sola, todos los tipos de recurrencias que surgen durante el análisis de recursos. Existen incluso recurrencias que no las puede resolver ninguna herramienta actual. Esto constituye claramente un cuello de botella para este tipo de análisis del uso de recursos. Por lo tanto, uno de los principales desafíos que hemos abordado en esta tesis es el diseño y desarrollo de un novedoso marco modular para la resolución de relaciones recurrentes, combinando y aprovechando los resultados de resolutores existentes. Además de ello, hemos desarrollado e integrado en nuestro nuevo resolutor una técnica para la obtención de cotas superiores en forma cerrada de una clase característica de relaciones recurrentes que surgen durante el análisis de programas lógicos con parámetros de acumulación. Finalmente, hemos integrado el nuevo análisis de recursos con el marco general para verificación de recursos de CiaoPP, y hemos instanciado dicho marco para la verificación de especificaciones sobre el consumo de energía de programas imperativas embarcados, mostrando la viabilidad y utilidad de la herramienta resultante en una aplicación real.
Resumo:
Esta Tesis surgió ante la intensidad y verosimilitud de varias señales o “warnings” asociadas a políticas dirigidas a reducir el peso del petróleo en el sector energético, tanto por razones económicas, como geopolíticas, como ambientales. Como tal Tesis se consolidó al ir incorporando elementos novedosos pero esenciales en el mundo petrolífero, particularmente las “tecnologías habilitantes”, tanto de incidencia directa, como el “fracking” como indirecta, del cual es un gran ejemplo el Vehículo Eléctrico (puro). La Tesis se definió y estructuró para elaborar una serie de indagaciones y disquisiciones, que comportaran un conjunto de conclusiones que fueran útiles para las corporaciones energéticas. También para la comprensión de la propia evolución del sector y de sus prestaciones técnicas y económicas, de cara a dar el servicio que los usuarios finales piden. Dentro de las tareas analíticas y reflexivas de la Tesis, se acuñaron ciertos términos conceptuales para explicar más certeramente la realidad del sector, y tal es el caso del “Investment burden”, que pondera la inversión específica (€/W) requerida por una instalación, con la duración del período de construcción y los riesgos tanto tangibles como regulatorios. Junto a ello la Tesis propone una herramienta de estudio y prognosis, denominada “Market integrated energy efficiency”, especialmente aplicable a dicotomías. Tal es el caso del coche térmico, versus coche eléctrico. El objetivo es optimizar una determinada actividad energética, o la productividad total del sector. Esta Tesis propone varias innovaciones, que se pueden agrupar en dos niveles: el primero dentro del campo de la Energía, y el segundo dentro del campo de las corporaciones, y de manera especial de las corporaciones del sector hidrocarburos. A nivel corporativo, la adaptación a la nueva realidad será función directa de la capacidad de cada corporación para desarrollar y/o comprar las tecnologías que permitan mantener o aumentar cuota de mercado. Las conclusiones de la Tesis apuntan a tres opciones principalmente para un replanteamiento corporativo: - Diversificación energética - Desplazamiento geográfico - Beneficiándose de posibles nuevos nichos tecnológicos, como son: • En upstream: Recuperación estimulada de petróleo mediante uso de energías renovables • En downstream: Aditivos orientados a reducir emisiones • En gestión del cambio: Almacenamiento energético con fines operativos Algunas políticas energéticas siguen la tendencia de crecimiento cero de algunos países de la OCDE. No obstante, la realidad mundial es muy diferente a la de esos países. Por ejemplo, según diversas estimaciones (basadas en bancos de datos solventes, referenciados en la Tesis) el número de vehículos aumentará desde aproximadamente mil millones en la actualidad hasta el doble en 2035; mientras que la producción de petróleo sólo aumentará de 95 a 145 millones de barriles al día. Un aumento del 50% frente a un aumento del 100%. Esto generará un curioso desajuste, que se empezará a sentir en unos pocos años. Las empresas y corporaciones del sector hidrocarburos pueden perder el monopolio que atesoran actualmente en el sector transporte frente a todas las demás fuentes energéticas. Esa pérdida puede quedar compensada por una mejor gestión de todas sus capacidades y una participación más integrada en el mundo de la energía, buscando sinergias donde hasta ahora no había sino distanciamiento. Los productos petrolíferos pueden alimentar cualquier tipo de maquina térmica, como las turbinas Brayton, o alimentar reformadores para la producción masiva de H2 para su posterior uso en pilas combustible. El almacenamiento de productos derivados del petróleo no es ningún reto ni plantea problema alguno; y sin embargo este almacenamiento es la llave para resolver muchos problemas. Es posible que el comercio de petróleo se haga menos volátil debido a los efectos asociados al almacenamiento; pero lo que es seguro es que la eficiencia energética de los usos de ese petróleo será más elevada. La Tesis partía de ciertas amenazas sobre el futuro del petróleo, pero tras el análisis realizado se puede vislumbrar un futuro prometedor en la fusión de políticas medioambientales coercitivas y las nuevas tecnologías emergentes del actual portafolio de oportunidades técnicas. ABSTRACT This Thesis rises from the force and the credibility of a number of warning signs linked to policies aimed at reducing the role of petroleum in the energy industry due to economical, geopolitical and environmental drives. As such Thesis, it grew up based on aggregating new but essentials elements into the petroleum sector. This is the case of “enabling technologies” that have a direct impact on the petroleum industry (such as fracking), or an indirect but deep impact (such as the full electrical vehicle). The Thesis was defined and structured in such a way that could convey useful conclusions for energy corporations through a series of inquiries and treatises. In addition to this, the Thesis also aims at understating la evolution of the energy industry and its capabilities both technical and economical, towards delivering the services required by end users. Within the analytical task performed in the Thesis, new terms were coined. They depict concepts that aid at explaining the facts of the energy industry. This is the case for “Investment burden”, it weights the specific capital investment (€/W) required to build a facility with the time that takes to build it, as well as other tangible risks as those posed by regulation. In addition to this, the Thesis puts forward an application designed for reviewing and predicting: the so called “Market integrated energy efficiency”, especially well-suited for dichotomies, very appealing for the case of the thermal car versus the electric car. The aim is to optimize energy related activity; or even the overall productivity of the system. The innovations proposed in this Thesis can be classified in two tiers. Tier one, within the energy sector; and tier two, related to Energy Corporation in general, but with oil and gas corporations at heart. From a corporate level, the adaptation to new energy era will be linked with the corporation capability to develop or acquire those technologies that will yield to retaining or enhancing market share. The Thesis highlights three options for corporate evolution: - diversification within Energy - geographic displacement - profiting new technologies relevant to important niches of work for the future, as: o Upstream: enhanced oil recovery using renewable energy sources (for upstream companies in the petroleum business) o Downstream: additives for reducing combustion emissions o Management of Change: operational energy storage Some energy policies tend to follow the zero-growth of some OECD countries, but the real thing could be very different. For instance, and according to estimates the number of vehicles in use will grow from 1 billion to more than double this figure 2035; but oil production will only grow from 95 million barrel/day to 145 (a 50% rise of versus an intensification of over a 100%). Hydrocarbon Corporation can lose the monopoly they currently hold over the supply of energy to transportation. This lose can be mitigated through an enhanced used of their capabilities and a higher degree of integration in the world of energy, exploring for synergies in those places were gaps were present. Petroleum products can be used to feed any type of thermal machine, as Brayton turbines, or steam reformers to produce H2 to be exploited in fuel cells. Storing petroleum products does not present any problem, but very many problems can be solved with them. Petroleum trading will likely be less volatile because of the smoothing effects of distributed storage, and indeed the efficiency in petroleum consumption will be much higher. The Thesis kicked off with a menace on the future of petroleum. However, at the end of the analysis, a bright future can be foreseen in the merging between highly demanding environmental policies and the relevant technologies of the currently emerging technical portfolio.
Resumo:
Acknowledgements We would like to thank Erik Rexstad and Rob Williams for useful reviews of this manuscript. The collection of visual and acoustic data was funded by the UK Department of Energy & Climate Change, the Scottish Government, Collaborative Offshore Wind Research into the Environment (COWRIE) and Oil & Gas UK. Digital aerial surveys were funded by Moray Offshore Renewables Ltd and additional funding for analysis of the combined datasets was provided by Marine Scotland. Collaboration between the University of Aberdeen and Marine Scotland was supported by MarCRF. We thank colleagues at the University of Aberdeen, Moray First Marine, NERI, Hi-Def Aerial Surveying Ltd and Ravenair for essential support in the field, particularly Tim Barton, Bill Ruck, Rasmus Nielson and Dave Rutter. Thanks also to Andy Webb, David Borchers, Len Thomas, Kelly McLeod, David L. Miller, Dinara Sadykova and Thomas Cornulier for advice on survey design and statistical approache. Data Accessibility Data are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.cf04g
Resumo:
Acknowledgements We would like to gratefully acknowledge the data provided by SEPA, Iain Malcolm. Mark Speed, Susan Waldron and many MSS staff helped with sample collection and lab analysis. We thank the European Research Council (project GA 335910 VEWA) for funding and are grateful for the constructive comments provided by three anonymous reviewers.
Resumo:
The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H2 and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H2 and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H2O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.
Resumo:
This report assesses the energy costs borne by the steel industry in the EU between 2010 and 2012, and compares the energy costs, including both the energy components and other regulatory costs, to production costs, turnover and margins of steel-makers. The estimates of energy costs are based on primary sources, i.e. is on information provided by steel-makers through a written questionnaire. This information was validated by the research team by checking annual energy bills, when available, and other public sources. In this respect, this exercise represents a unique fact-based investigation into the costs of energy for steel-makers in Europe, whereas most of the information currently available in the public domain is based on secondary or statistical information. In 2012, the median EU steel plant pays about €33/MWh for gas, up from €26/MWh in 2010. As for electricity, in 2012 the EU median plant pays €62/MWh, up from €59/MWh in 2010. The report also includes a comparison with the prices of energy carriers paid by producers based in the US.
Resumo:
This paper has two objectives. First, it attempts to establish the potential of policies on energy efficiency and energy demand-side management in the southern Mediterranean region. Second, by examining past trends in energy intensity and trends up to 2030, it analyses the prospects and costs of such policies, compared with expected developments in the price of energy resources. Based on both analyses (MEDPRO WP4) and on prospects for growth (MEDPRO WP8), it seems that energy intensity in the Mediterranean should fall perceptibly by approximately 13% in the next 20 years. But given the programmed energy mix, this will not limit emissions of CO2, which are likely to increase by more than 90%. The paper first presents the rationale for demand-side management (DSM) policies. After a general discussion of concepts, it tackles the question of instruments and measures for implementing such policies, before posing the question of the cost-efficiency approach for monitoring the measures the authorities introduce. Secondly, the paper assesses energy consumption and energy efficiency in the countries of the southern Mediterranean and the ways in which their main economic sectors have changed in recent decades. The third section outlines the demand management measures introduced and, taking Tunisia and Egypt as examples, estimates the cost of such policies. The fourth and last section offers a forecast analysis of energy consumption in the Mediterranean up to 2030, highlighting probable trends in terms of final consumption, energy intensity, energy mix and emissions of CO2. The section concludes with estimates in terms of cost, comparing objectives for lower intensity, results in terms of resource savings and the types of costs this approach represents.
Resumo:
This paper examines the functioning of energy efficiency standards and labeling policies for air conditioners in Japan. The results of our empirical analysis suggest that consumers respond more to label information, which benchmarks the energy efficiency performance of each product to a pre-specified target, than to direct performance measures. This finding provides justification for the setting, and regular updating, of target standards as well as their use in calculating relative performance measures. We also find, through graphical analysis, that air conditioner manufacturers face a tradeoff between energy efficiency and product compactness when they develop their products. This tradeoff, combined with the semi-regular upward revision of minimum energy efficiency standards, has led to the growth in indoor unit size of air conditioners in recent years. In the face of this phenomenon, regulatory rules were revised so that manufacturers could adhere to less stringent standards if the indoor unit size of their product remains below a certain size. Our demand estimates provide no evidence that larger indoor unit size causes disutility to consumers. It is therefore possible that the regulatory change was not warranted from a consumer welfare point of view.