715 resultados para ELECTROCHEMISTRY
Resumo:
Reaction of bis(ethane-1,2-diamine)copper(II) with acetaldehyde and nitromethane in methanol leads, stereoselectively, to the new macrocyclic complex (trans-5(R),7(R),12(S),14(S))-tetramethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecane)copper(II) perchlorate alpha-[CuL1](ClO4)(2) in good yield. Reduction of the nitro groups affords the hexaamine (L-2), which was crystallized as [H4L2](ClO4)(4) . 2H(2)O and characterized by an X-ray crystal structure study (monoclinic P2(1)/n, a = 9.763(2) Angstrom, b = 12.1988(7) Angstrom, c = 13.036(2) Angstrom, beta = 105.668(7)degrees, Z = 2) and complexed with Cu-II to produce the complex beta-[Cu(H2L2)](ClO4)(4) . 2H(2)O, which has also been characterized by X-ray crystallography (monoclinic P2(1)/n, a = 9.717(4) Angstrom, b = 12.174(2) Angstrom, c = 13.036(5) Angstrom, beta = 106.51(2)degrees, Z = 2). Reaction of alpha-[CuL1](2+) with either basic hydrogen peroxide or dilute nitrous acid leads to mild reduction of the nitro groups to afford the ketoxime L-3 as its N-based isomeric Cu-II complexes, trans-I [CuL3](ClO4)(2) and trans-II [Cu(L-3)Cl]Cl . 7H(2)O, the latter of which has been characterized structurally: triclinic, <P(1)over bar> a = 10.8441(5) Angstrom, b = 11.6632(9) Angstrom, c = 11.8723(9) Angstrom, alpha = 113.634(7)degrees, beta = 95.744(5), gamma = 94.851(5)degrees Z = 2. Variations in the configurations of the coordinated amines in [CuL1](2+), [CuL2](2+), and [CuL3](2+) have a profound effect on the spectroscopy and electrochemistry of their complexes.
Resumo:
The chemistry of copper patination was investigated by two series of experiments. The chemistry of an aqueous copper-sulphate solution was studied at concentrations and pH values near those predicted in an electrolyte on copper exposed to the atmosphere. The electrochemical reactions in an electrolyte in contact with cuprite were investigated in a reaction vessel which used cuprite powder in artificial rainwater to study the electrochemistry of the atmospheric corrosion and patination of copper. Typical sulphate concentrations in rainwater are sufficient to precipitate posnjakite (Cu4SO4(OH)(6)2H(2)O)), a possible precursor to brochantite, within an hour of wetting a cuprite surface. Brochantite (Cu4SO4(OH)(6)), the most commonly found copper salt in natural patinas is responsible for their green appearance. Precipitation of brochantite from the electrolyte resulted from an increase in pH due to the cathodic reduction of oxygen and an increase in cupric ion concentrations by cuprite oxidation. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its Fe-III complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to Fe-III in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH-H)(2)](+) shows that the trivalent oxidation state is dominant over a wide potential range and that the Fe-II analogue is not a stable form of this complex. The fact that [Fe(NIH-H)(2)](+) cannot-cycle between the Fe-II and Fe-III states suggests that the production of toxic free- radical species, e.g. OH. or O2(.-),is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of Fe-III to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its Fe-III complex are discussed in the context of understanding its anti-tumour activity.
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
Pt-Sn electrocatalysts of different compositions were prepared and dispersed on carbon Vulcan XC-72 using the Pechini-Adams method. The catalysts were characterized by energy dispersive X-ray analysis and X-ray diffraction. The electrochemical properties of these electrode materials were also examined by cyclic voltammetry and chronoamperometric experiments in acid medium. The results showed that the presence of Sn greatly enhances the activity of Pt towards the electrooxidation of ethanol. Moreover, it contributes to reduce the amount of noble metal in the anode of direct alcohol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. Electrolysis of ethanol solutions at 0.55 V vs. RHE allowed to determine by liquid chromatography acetaldehyde and acetic acid as the main reaction products. CO(2) was also analyzed after trapping it in a NaOH solution indicating that the cleavage of the C-C bond in the ethanol molecule did occur during the adsorption process. In situ IR reflectance spectroscopy helped to investigate in more details the reaction mechanism through the identification of the reaction products as well as the presence of some intermediate adsorbed species, such as linearly bonded carbon monoxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Resumo:
The influence of the preparation method on the performance of RuO(2)-Ta(2)O(5) electrodes was evaluated toward the ethanol oxidation reaction (EOR). Freshly prepared RuO(2)-Ta(2)O(5) thin films containing between 30 and 80 at.% Ru were prepared by two different methods: the modified Pechini-Adams method (DPP) and standard thermal decomposition (STD). Electrochemical investigation of the electrode containing RuO(2)-Ta(2)O(5) thin films was conducted as a function of electrode composition in a 0.5-mol dm(-3) H(2)SO(4) solution, in the presence and absence of ethanol and its derivants (acetaldehyde and acetic acid). At a low ethanol concentration (5 mmol dm(-3)), ethanol oxidation leads to high yields of acetic acid and CO(2). On the other hand, an increase in ethanol concentration (15-1000 mmol dm(-3)) favors acetaldehyde formation, so acetic acid and CO(2) production is hindered, in this case. Electrodes prepared by DPP provide higher current efficiency than STD electrodes for all the investigated ethanol concentrations. This may be explained by the increase in electrode area obtained with the DPP preparation method compared with STD. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Self-assembled films from SnO2 and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer(LbL) method. The modified electrodes were immersed into a H2PtCl6 solution, a current of 100 mu A was applied, and different electrodeposition times were used. The SnO2/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L-1 H2SO4, at a sweeping rate of 50mVs(-1). Oxygen-like species are formed at less positive potentials for the Pt-SnO2/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 k Omega cm(2)) compared with the Pt-SnO2/PAH film with 1 min of electrodeposition (0.4 k Omega cm(2)). According to the Langmuir-Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt-SnO2/PAH concerning ethanol electrooxidation. With these features, this Pt-SnO2/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The novel asymmetric metallo-organic triads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}(Ru(bpy)(2)Cl}](PF(6))(2) (5a,b) for which cis- and trans-B(4-py)BPFPH(2)=5,10-bis(pentafluorophenyl)-15,20-bis(4-pyridyl)porphyrin and 5,15-bis(pentafluorophenyl)-10,20-bis(4-pyridyl)porphyrin, respectively; Ac = acetate; py = pyridine and bpy = 2,2`-bipyridine, as well as their corresponding monosubstituted dyads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}]PF(6) (4a,b) have been structurally characterized via electrospray ionization mass spectrometry (ESI-MS and ESI-MS/MS). The ESI-MS of dyads 4a,b display two characteristic Ru-multicomponent clusters of isotopologue ions corresponding to singly charged ions 4a,b(+) of m/z 1629 and doubly charged ions [4a,b+H](2+) of m/z 815 and the triads 5a,b are detected by ESI-MS as the intact doubly charged cluster of isotopologue ions of m/z 1039 [5a,b](2+). The ESI-MS/MS of 4a,b(+), [4a,b+H](2+) and [5a,b](2+) reveal characteristic dissociation pathways, which confirm the structural assignments providing additional information on the intrinsic binding strengths of the gaseous ions. Although the gas-phase behavior of each pair of isomers was rather similar, the less symmetric dyads 4a,b are distinguished via the (1)H NMR spectral profile of the pyrrolic signals. Exploratory photophysical assays have shown that both modifying motifs alter the porphyrinic core emission profile, opening the possibility to use these asymmetric systems as photophysical devices. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO(2)-Ta(2)O(5) thin films containing between 10 and 90 at.% Ru were prepared by the Pechini-Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO(2) and orthorhombic structure for Ta(2)O(5). XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm(-2) in 80 degrees C 0.5 mol dm(-3) H(2)SO(4). The performance of electrodes prepared by the Pechini-Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.
Resumo:
The electrochemical oxidation of ethanol at Sn((1-x))Ir (x) O(2) electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L(-1) HClO(4) solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon-carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.
Resumo:
Binary and ternary Pt-based catalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by TEM and XRD. XRD showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/W and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm(-3) H2SO4) and in the presence of ethanol. The results obtained at room temperature showed that the PtSnW/C catalyst display better catalytic activity for ethanol oxidation compared to PtW/C catalyst. The reaction products (acetaldehyde, acetic acid and carbon dioxide) were analyzed by HPLC and identified by in situ infrared reflectance spectroscopy. The latter technique also allowed identification of the intermediate and adsorbed species. The presence of linearly adsorbed CO and CO2 indicated that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 degrees C, the Pt85Sn8W7/C catalyst gave higher current and power performances as anode material in a direct ethanol fuel cell (DEFC).
Resumo:
This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.