941 resultados para ELECTRICAL EQUIPMENT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroperative hypothermia is recognized to increase mortality and morbidity, and the paediatric anaesthetist faces specific challenges resulting from the increased body surface to volume ratio, particularly in smaller children. We describe three children who were consecutive patients on one operating list and sustained severe thermal injuries. These were due to a malfunctioning electrical heating mat, despite appropriate use and monitoring by the attending anaesthetist. It is rare for thermal warming devices to cause injury. We review the use of heating mats, and suggest modifications in their manufacture which may minimize the risks associated with heating devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increase in the use of multi-pulse, rectifier-fed motor-drive equipment on board more-electric aircraft. Motor drives with feedback control appear as constant power loads to the rectifiers, which can cause instability of the DC filter capacitor voltage at the output of the rectifier. This problem can be exacerbated by interactions between rectifiers that share a common source impedance. In order that such a system can be analysed, there is a need for average, dynamic models of systems of rectifiers. In this study, an efficient, compact method for deriving the approximate, linear, large-signal, average models of two heterogeneous systems of rectifiers, which are fed from a common source impedance, is presented. The models give insight into significant interaction effects that occur between the converters, and that arise through the shared source impedance. First, a 6-pulse and doubly wound, transformer-fed, 12-pulse rectifier system is considered, followed by a 6-pulse and autotransformer-fed, 12-pulse rectifier system. The system models are validated against detailed simulations and laboratory prototypes, and key characteristics of the two system types are compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The print substrate influences the print result in dry toner electrophotography, which is a widely used digital printing method. The influence of the substrate can be seen more easily in color printing, as that is a more complex process compared to monochrome printing. However, the print quality is also affected by the print substrate in grayscale printing. It is thus in the interests of both substrate producers and printing equipment manufacturers to understand the substrate properties that influence the quality of printed images in more detail. In dry toner electrophotography, the image is printed by transferring charged toner particles to the print substrate in the toner transfer nip, utilizing an electric field, in addition to the forces linked to the contact between toner particles and substrate in the nip. The toner transfer and the resulting image quality are thus influenced by the surface texture and the electrical and dielectric properties of the print substrate. In the investigation of the electrical and dielectric properties of the papers and the effects of substrate roughness, in addition to commercial papers, controlled sample sets were made on pilot paper machines and coating machines to exclude uncontrolled variables from the experiments. The electrical and dielectric properties of the papers investigated were electrical resistivity and conductivity, charge acceptance, charge decay, and the dielectric permittivity and losses at different frequencies, including the effect of temperature. The objective was to gain an understanding of how the electrical and dielectric properties are affected by normal variables in papermaking, including basis weight, material density, filler content, ion and moisture contents, and coating. In addition, the dependency of substrate resistivity on the electric field applied was investigated. Local discharging did not inhibit transfer with the paper roughness levels that are normal in electrophotographic color printing. The potential decay of paper revealed that the charge decay cannot be accurately described with a single exponential function, since in charge decay there are overlapping mechanisms of conduction and depolarization of paper. The resistivity of the paper depends on the NaCl content and exponentially on moisture content although it is also strongly dependent on the electric field applied. This dependency is influenced by the thickness, density, and filler contents of the paper. Furthermore, the Poole-Frenkel model can be applied to the resistivity of uncoated paper. The real part of the dielectric constant ε’ increases with NaCl content and relative humidity, but when these materials cannot polarize freely, the increase cannot be explained by summing the effects of their dielectric constants. Dependencies between the dielectric constant and dielectric loss factor and NaCl content, temperature, and frequency show that in the presence of a sufficient amount of moisture and NaCl, new structures with a relaxation time of the order of 10-3 s are formed in paper. The ε’ of coated papers is influenced by the addition of pigments and other coating additives with polarizable groups and due to the increase in density. The charging potential decreases and the electrical conductivity, potential decay rate, and dielectric constant of paper increase with increasing temperature. The dependencies are exponential and the temperature dependencies and their activation energies are altered by the ion content. The results have been utilized in manufacturing substrates for electrophotographic color printing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac arrest after open surgery has an incidence of approximately 3%, of which more than 50% of the cases are due to ventricular fibrillation. Electrical defibrillation is the most effective therapy for terminating cardiac arrhythmias associated with unstable hemodynamics. The excitation threshold of myocardial microstructures is lower when external electrical fields are applied in the longitudinal direction with respect to the major axis of cells. However, in the heart, cell bundles are disposed in several directions. Improved myocardial excitation and defibrillation have been achieved by applying shocks in multiple directions via intracardiac leads, but the results are controversial when the electrodes are not located within the cardiac chambers. This study was designed to test whether rapidly switching shock delivery in 3 directions could increase the efficiency of direct defibrillation. A multidirectional defibrillator and paddles bearing 3 electrodes each were developed and used in vivo for the reversal of electrically induced ventricular fibrillation in an anesthetized open-chest swine model. Direct defibrillation was performed by unidirectional and multidirectional shocks applied in an alternating fashion. Survival analysis was used to estimate the relationship between the probability of defibrillation and the shock energy. Compared with shock delivery in a single direction in the same animal population, the shock energy required for multidirectional defibrillation was 20% to 30% lower (P < .05) within a wide range of success probabilities. Rapidly switching multidirectional shock delivery required lower shock energy for ventricular fibrillation termination and may be a safer alternative for restoring cardiac sinus rhythm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation leads to a hardening of steel due to an increase in the density of dislocations and a reduction in their mobility, giving rise to a state of elevated residual stresses in the crystal lattice. In the microstructure, one observes an increase in the contribution of crystalline orientations which are unfavorable to the magnetization, as seen, for example, by a decrease in B(50), the magnetic flux density at a field of 50 A/cm. The present study was carried out with longitudinal strips of fully processed non-oriented (NO) electrical steel, with deformations up to 70% resulting from cold rolling in the longitudinal direction. With increasing plastic deformation, the value of B(50) gradually decreases until it reaches a minimum value, where it remains even for larger deformations. On the other hand, the coercive field H(c) continually increases. Magnetometry results and electron backscatter diffraction results are compared and discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560895]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study investigated the effects of low-level laser therapy (LLLT) and electrical stimulation (ES) on bone loss in spinal cord-injured rats. Materials and Methods: Thirty-seven male Wistar rats were divided into four groups: standard control group (CG); spinal cord-injured control (SC); spinal cord-injured treated with laser (SCL; GaAlAs, 830 nm, CW, 30mW/cm, 250 J/cm(2)); and spinal cord-injured treated with electrical field stimulation (SCE; 1.5 MHz, 1: 4 duty cycles, 30 mW, 20 min). Biomechanical, densitometric, and morphometric analyses were performed. Results: SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG). SCE rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphyses; and the SCL group showed a trend toward the same result (versus SC). No increase was found in either mechanical or densitometric parameters. Conclusion: We conclude that the mentioned treatments were able to initiate a positive bone-tissue response, maybe through stimulation of osteoblasts, which was able to determine the observed morphometric modifications. However, the evoked tissue response could not determine either biomechanical or densitometric modifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of magnetoresistance and dc magnetization was conducted in polycrystalline (Ru(1-x)Ir(x))Sr(2)GdCu(2)O(8) [(Ru,Ir)-1212] compounds, for 0 <= x <= 0.15. We found that a deviation from linearity in the normal-state electrical resistivity (rho) curves for temperatures below the magnetic transition temperature T(M) < 130 K can be properly described by a logarithmic term. The prefactor C(x, H) of this anomalous ln T contribution to rho(T) increases linearly with the Ir concentration, and diminishes rapidly with increasing applied magnetic field up to H approximate to 4 T, merging with the C(0,H) curve at higher magnetic fields. Correlation with magnetic susceptibility measurements supports a scenario of local perturbations in the orientation of Ru moments induced in the neighborhood of the Ir ions, therefore acting as scattering centers. The linear dependence of the prefactor C(x,H=0) and the superconducting transition temperature T(SC) on x points to a common source for the resistivity anomaly and the reduction in T(SC), suggesting that the CuO(2) and RuO(2) layers are not decoupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF(2) glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of beta-PbF(2) crystallites, with the indication of incorporating reduced lead ions (Pb(+)), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to analyze the effect of neuromuscular electrical stimulation (NMES) on myoelectrical activity and on joint torque during isometric plantar flexion contraction. Ten healthy young adult subjects participate in this study. The electrodes for NMES are placed along posterior thigh along ciatic nerve trajectory. It is measured the myoelectrical activity and the isometric torque generated by ankle plantar flexion with an isokinetic dynamometer. The conditions of isometric contractions are maximum isometric voluntary contraction (MIVC), NMES, and association of both (MIVC+NMES). The results show lower torque during NMES and larger SOL activity compare to the others. Besides, in order to keep the same objective task (to produce the same level of torque), neuromuscular adaptations are necessary on the common drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several high temperature superconductor (HTS) tapes have been developed since the late eighties. Due to the new techniques applied for their production, HTS tapes are becoming feasible and practical for many applications. In this work, we present the test results of five commercial HTS tapes from the BSCCO and YBCO families (short samples of 200 mm). We have measured and analyzed their intrinsic and extrinsic properties and compared their behaviors for fault current limiter (FCL) applications. Electrical measurements were performed to determine the critical current and the n value through the V-I relationship under DC and AC magnetic fields. The resistance per unit length was determined as a function of temperature. The magnetic characteristics were analyzed through susceptibility curves as a function of temperature. As transport current generates a magnetic field surrounding the HTS material, the magnetic measurements indicate the magnetic field supported by the tapes under a peak current 1.5 times higher than the critical current, I(c). By pulsed current tests the recovery time and the energy/volume during a current fault were also analyzed. These results are in agreement with the data found in the literature giving the most appropriate performance conductor for a FCL device (I(peak) = 4 kA) to be used in a 220 V-60 Hz grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The joint process between tapes of coated conductors is a critical issue for the most of the applications of high temperature superconductors (HTS). Using different fabrication techniques joints of YBCO coated superconductors were prepared and characterized through electrical measurements. For soldering material low melting point eutectic alloys, such as In-Sn (m.p. 116 degrees C) and Sn-Pb (m. p. 189 degrees C) were selected to prepare lap joints with effective length between 1 to 20 cm. The splice resistance and the critical current of the joints were evaluated by I-V curve measurements with the maximum current strength above the critical current, in order to evaluate the degree of degradation for each joint method. Pressed lap joints prepared with tapes without external reinforcement presented low resistance lap joint nevertheless some critical current degradation occurs when strong pressing is applied. When mechanical pressure is applied during the soldering process we can reduce the thickness of the solder alloy and a residual resistance arises from contributions of high resistivity matrix and external reinforcement. The lap joints for reinforced tape were prepared using two methods: the first, using ""as-supplied"" tape and the other after reinforcement-removal; in the latter case, the tapes were resoldered using Sn-Pb alloy. The results using several joint geometries, distinct surface preparation processes and different soldering materials are presented and analysed. The solder alloy with lower melting point and the longer joint length presented the smallest joint resistance.