952 resultados para Dynamic simulation
Resumo:
Healthcare professionals and the public have increasing concerns about the ability of emergency departments to meet current demands. Increased demand for emergency services, mainly caused by a growing number of minor and moderate injuries has reached crisis proportions, especially in the United Kingdom. Numerous efforts have been made to explore the complex causes because it is becoming more and more important to provide adequate healthcare within tight budgets. Optimisation of patient pathways in the emergency department is therefore an important factor. This paper explores the possibilities offered by dynamic simulation tools to improve patient pathways using the emergency department of a busy university teaching hospital in Switzerland as an example.
Resumo:
Virtual certification partially substitutes by computer simulations the experimental techniques required for rail vehicle certification. In this paper, several works were these techniques were used in the vehicle design and track maintenance processes are presented. Dynamic simulation of multibody systems was used to virtually apply the EN14363 standard to certify the dynamic behaviour of vehicles. The works described are: assessment of a freight bogie design adapted to meter-gauge, assessment of a railway track layout for a subway network, freight bogie design with higher speed and axle load, and processing of the data acquired by a track recording vehicle for track maintenance.
Resumo:
Purpose – Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal, configurations on the hexapod robotic platform SILO6. Design/methodology/approach – Dynamic simulation of this hexapod is used to develop a set of rules that optimize energy expenditure in both configurations. Later, through a theoretical analysis of energy consumption and experimental measurements in the real platform SILO6, a configuration is chosen. Findings – It is widely accepted that the mammal configuration in statically stable walking machines is better for supporting high loads, while the insect configuration is considered to be better for improving mobility. However, taking into account the leg dynamics and not only the body weight, different results are obtained. In a mammal configuration, supporting body weight accounts for 5 per cent of power consumption while leg dynamics accounts for 31 per cent. Originality/value – As this paper demonstrates, the energy expended when the robot walks along a straight and horizontal line is the same for both insect and mammal configurations, while power consumption during crab walking in an insect configuration exceeds power consumption in the mammal configuration.
Resumo:
Assessing social benefits in transport policy implementation has been studied by many researchers using theoretical or empirical measures. However, few of them measure social benefit using different discount rates including the inter-temporal preferences rate of users, the private investment discount rate and the inter-temporal preferences rate of the government. In general, the social discount rate used is the same for all social actors. Therefore, this paper aims to assess a new method by integrating different types of discount rate belonging to different social actors in order to measure the real benefits of each actor in the short, medium and long term. A dynamic simulation is provided by a strategic Land-Use and Transport Interaction (LUTI) model. The method is tested by optimizing a cordon toll scheme in Madrid considering socio- economic efficiency and environmental criteria. Based on the modified social welfare function (WF), the effects on the measure of social benefits are estimated and compared with the classical WF results as well. The results of this research could be a key issue to understanding the relationship between transport system policies and social actors' benefits distribution in a metropolitan context. The results show that the use of more suitable discount rates for each social actor had an effect on the selection and definition of optimal strategy of congestion pricing. The usefulness of the measure of congestion toll declines more quickly overtime.
Resumo:
Many researchers have used theoretical or empirical measures to assess social benefits in transport policy implementation. However, few have measured social benefits by using discount rates, including the intertemporal preference rate of users, the private investment discount rate, and the intertemporal preference rate of the government. In general, the social discount rate used is the same for all social actors. This paper aims to assess a new method by integrating different types of discount rates belonging to different social actors to measure the real benefits of each actor in the short term, medium term, and long term. A dynamic simulation is provided by a strategic land use and transport interaction model. The method was tested by optimizing a cordon toll scheme in Madrid, Spain. Socioeconomic efficiency and environmental criteria were considered. On the basis of the modified social welfare function, the effects on the measure of social benefits were estimated and compared with the classical welfare function measures. The results show that the use of more suitable discount rates for each social actor had an effect on the selection and definition of optimal strategy of congestion pricing. The usefulness of the measure of congestion toll declines more quickly over time. This result could be the key to understanding the relationship between transport system policies and the distribution of social actors? benefits in a metropolitan context.
Resumo:
Un escenario habitualmente considerado para el uso sostenible y prolongado de la energía nuclear contempla un parque de reactores rápidos refrigerados por metales líquidos (LMFR) dedicados al reciclado de Pu y la transmutación de actínidos minoritarios (MA). Otra opción es combinar dichos reactores con algunos sistemas subcríticos asistidos por acelerador (ADS), exclusivamente destinados a la eliminación de MA. El diseño y licenciamiento de estos reactores innovadores requiere herramientas computacionales prácticas y precisas, que incorporen el conocimiento obtenido en la investigación experimental de nuevas configuraciones de reactores, materiales y sistemas. A pesar de que se han construido y operado un cierto número de reactores rápidos a nivel mundial, la experiencia operacional es todavía reducida y no todos los transitorios se han podido entender completamente. Por tanto, los análisis de seguridad de nuevos LMFR están basados fundamentalmente en métodos deterministas, al contrario que las aproximaciones modernas para reactores de agua ligera (LWR), que se benefician también de los métodos probabilistas. La aproximación más usada en los estudios de seguridad de LMFR es utilizar una variedad de códigos, desarrollados a base de distintas teorías, en busca de soluciones integrales para los transitorios e incluyendo incertidumbres. En este marco, los nuevos códigos para cálculos de mejor estimación ("best estimate") que no incluyen aproximaciones conservadoras, son de una importancia primordial para analizar estacionarios y transitorios en reactores rápidos. Esta tesis se centra en el desarrollo de un código acoplado para realizar análisis realistas en reactores rápidos críticos aplicando el método de Monte Carlo. Hoy en día, dado el mayor potencial de recursos computacionales, los códigos de transporte neutrónico por Monte Carlo se pueden usar de manera práctica para realizar cálculos detallados de núcleos completos, incluso de elevada heterogeneidad material. Además, los códigos de Monte Carlo se toman normalmente como referencia para los códigos deterministas de difusión en multigrupos en aplicaciones con reactores rápidos, porque usan secciones eficaces punto a punto, un modelo geométrico exacto y tienen en cuenta intrínsecamente la dependencia angular de flujo. En esta tesis se presenta una metodología de acoplamiento entre el conocido código MCNP, que calcula la generación de potencia en el reactor, y el código de termohidráulica de subcanal COBRA-IV, que obtiene las distribuciones de temperatura y densidad en el sistema. COBRA-IV es un código apropiado para aplicaciones en reactores rápidos ya que ha sido validado con resultados experimentales en haces de barras con sodio, incluyendo las correlaciones más apropiadas para metales líquidos. En una primera fase de la tesis, ambos códigos se han acoplado en estado estacionario utilizando un método iterativo con intercambio de archivos externos. El principal problema en el acoplamiento neutrónico y termohidráulico en estacionario con códigos de Monte Carlo es la manipulación de las secciones eficaces para tener en cuenta el ensanchamiento Doppler cuando la temperatura del combustible aumenta. Entre todas las opciones disponibles, en esta tesis se ha escogido la aproximación de pseudo materiales, y se ha comprobado que proporciona resultados aceptables en su aplicación con reactores rápidos. Por otro lado, los cambios geométricos originados por grandes gradientes de temperatura en el núcleo de reactores rápidos resultan importantes para la neutrónica como consecuencia del elevado recorrido libre medio del neutrón en estos sistemas. Por tanto, se ha desarrollado un módulo adicional que simula la geometría del reactor en caliente y permite estimar la reactividad debido a la expansión del núcleo en un transitorio. éste módulo calcula automáticamente la longitud del combustible, el radio de la vaina, la separación de los elementos de combustible y el radio de la placa soporte en función de la temperatura. éste efecto es muy relevante en transitorios sin inserción de bancos de parada. También relacionado con los cambios geométricos, se ha implementado una herramienta que, automatiza el movimiento de las barras de control en busca d la criticidad del reactor, o bien calcula el valor de inserción axial las barras de control. Una segunda fase en la plataforma de cálculo que se ha desarrollado es la simulació dinámica. Puesto que MCNP sólo realiza cálculos estacionarios para sistemas críticos o supercríticos, la solución más directa que se propone sin modificar el código fuente de MCNP es usar la aproximación de factorización de flujo, que resuelve por separado la forma del flujo y la amplitud. En este caso se han estudiado en profundidad dos aproximaciones: adiabática y quasiestática. El método adiabático usa un esquema de acoplamiento que alterna en el tiempo los cálculos neutrónicos y termohidráulicos. MCNP calcula el modo fundamental de la distribución de neutrones y la reactividad al final de cada paso de tiempo, y COBRA-IV calcula las propiedades térmicas en el punto intermedio de los pasos de tiempo. La evolución de la amplitud de flujo se calcula resolviendo las ecuaciones de cinética puntual. Este método calcula la reactividad estática en cada paso de tiempo que, en general, difiere de la reactividad dinámica que se obtendría con la distribución de flujo exacta y dependiente de tiempo. No obstante, para entornos no excesivamente alejados de la criticidad ambas reactividades son similares y el método conduce a resultados prácticos aceptables. Siguiendo esta línea, se ha desarrollado después un método mejorado para intentar tener en cuenta el efecto de la fuente de neutrones retardados en la evolución de la forma del flujo durante el transitorio. El esquema consiste en realizar un cálculo cuasiestacionario por cada paso de tiempo con MCNP. La simulación cuasiestacionaria se basa EN la aproximación de fuente constante de neutrones retardados, y consiste en dar un determinado peso o importancia a cada ciclo computacial del cálculo de criticidad con MCNP para la estimación del flujo final. Ambos métodos se han verificado tomando como referencia los resultados del código de difusión COBAYA3 frente a un ejercicio común y suficientemente significativo. Finalmente, con objeto de demostrar la posibilidad de uso práctico del código, se ha simulado un transitorio en el concepto de reactor crítico en fase de diseño MYRRHA/FASTEF, de 100 MW de potencia térmica y refrigerado por plomo-bismuto. ABSTRACT Long term sustainable nuclear energy scenarios envisage a fleet of Liquid Metal Fast Reactors (LMFR) for the Pu recycling and minor actinides (MAs) transmutation or combined with some accelerator driven systems (ADS) just for MAs elimination. Design and licensing of these innovative reactor concepts require accurate computational tools, implementing the knowledge obtained in experimental research for new reactor configurations, materials and associated systems. Although a number of fast reactor systems have already been built, the operational experience is still reduced, especially for lead reactors, and not all the transients are fully understood. The safety analysis approach for LMFR is therefore based only on deterministic methods, different from modern approach for Light Water Reactors (LWR) which also benefit from probabilistic methods. Usually, the approach adopted in LMFR safety assessments is to employ a variety of codes, somewhat different for the each other, to analyze transients looking for a comprehensive solution and including uncertainties. In this frame, new best estimate simulation codes are of prime importance in order to analyze fast reactors steady state and transients. This thesis is focused on the development of a coupled code system for best estimate analysis in fast critical reactor. Currently due to the increase in the computational resources, Monte Carlo methods for neutrons transport can be used for detailed full core calculations. Furthermore, Monte Carlo codes are usually taken as reference for deterministic diffusion multigroups codes in fast reactors applications because they employ point-wise cross sections in an exact geometry model and intrinsically account for directional dependence of the ux. The coupling methodology presented here uses MCNP to calculate the power deposition within the reactor. The subchannel code COBRA-IV calculates the temperature and density distribution within the reactor. COBRA-IV is suitable for fast reactors applications because it has been validated against experimental results in sodium rod bundles. The proper correlations for liquid metal applications have been added to the thermal-hydraulics program. Both codes are coupled at steady state using an iterative method and external files exchange. The main issue in the Monte Carlo/thermal-hydraulics steady state coupling is the cross section handling to take into account Doppler broadening when temperature rises. Among every available options, the pseudo materials approach has been chosen in this thesis. This approach obtains reasonable results in fast reactor applications. Furthermore, geometrical changes caused by large temperature gradients in the core, are of major importance in fast reactor due to the large neutron mean free path. An additional module has therefore been included in order to simulate the reactor geometry in hot state or to estimate the reactivity due to core expansion in a transient. The module automatically calculates the fuel length, cladding radius, fuel assembly pitch and diagrid radius with the temperature. This effect will be crucial in some unprotected transients. Also related to geometrical changes, an automatic control rod movement feature has been implemented in order to achieve a just critical reactor or to calculate control rod worth. A step forward in the coupling platform is the dynamic simulation. Since MCNP performs only steady state calculations for critical systems, the more straight forward option without modifying MCNP source code, is to use the flux factorization approach solving separately the flux shape and amplitude. In this thesis two options have been studied to tackle time dependent neutronic simulations using a Monte Carlo code: adiabatic and quasistatic methods. The adiabatic methods uses a staggered time coupling scheme for the time advance of neutronics and the thermal-hydraulics calculations. MCNP computes the fundamental mode of the neutron flux distribution and the reactivity at the end of each time step and COBRA-IV the thermal properties at half of the the time steps. To calculate the flux amplitude evolution a solver of the point kinetics equations is used. This method calculates the static reactivity in each time step that in general is different from the dynamic reactivity calculated with the exact flux distribution. Nevertheless, for close to critical situations, both reactivities are similar and the method leads to acceptable practical results. In this line, an improved method as an attempt to take into account the effect of delayed neutron source in the transient flux shape evolutions is developed. The scheme performs a quasistationary calculation per time step with MCNP. This quasistationary simulations is based con the constant delayed source approach, taking into account the importance of each criticality cycle in the final flux estimation. Both adiabatic and quasistatic methods have been verified against the diffusion code COBAYA3, using a theoretical kinetic exercise. Finally, a transient in a critical 100 MWth lead-bismuth-eutectic reactor concept is analyzed using the adiabatic method as an application example in a real system.
Resumo:
Tese de mestrado integrado em Engenharia da Energia e do Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Chemical engineers are turning to multiscale modelling to extend traditional modelling approaches into new application areas and to achieve higher levels of detail and accuracy. There is, however, little advice available on the best strategy to use in constructing a multiscale model. This paper presents a starting point for the systematic analysis of multiscale models by defining several integrating frameworks for linking models at different scales. It briefly explores how the nature of the information flow between the models at the different scales is influenced by the choice of framework, and presents some restrictions on model-framework compatibility. The concepts are illustrated with reference to the modelling of a catalytic packed bed reactor. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Granulation is one of the fundamental operations in particulate processing and has a very ancient history and widespread use. Much fundamental particle science has occurred in the last two decades to help understand the underlying phenomena. Yet, until recently the development of granulation systems was mostly based on popular practice. The use of process systems approaches to the integrated understanding of these operations is providing improved insight into the complex nature of the processes. Improved mathematical representations, new solution techniques and the application of the models to industrial processes are yielding better designs, improved optimisation and tighter control of these systems. The parallel development of advanced instrumentation and the use of inferential approaches provide real-time access to system parameters necessary for improvements in operation. The use of advanced models to help develop real-time plant diagnostic systems provides further evidence of the utility of process system approaches to granulation processes. This paper highlights some of those aspects of granulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A sieve plate distillation column has been constructed and interfaced to a minicomputer with the necessary instrumentation for dynamic, estimation and control studies with special bearing on low-cost and noise-free instrumentation. A dynamic simulation of the column with a binary liquid system has been compiled using deterministic models that include fluid dynamics via Brambilla's equation for tray liquid holdup calculations. The simulation predictions have been tested experimentally under steady-state and transient conditions. The simulator's predictions of the tray temperatures have shown reasonably close agreement with the measured values under steady-state conditions and in the face of a step change in the feed rate. A method of extending linear filtering theory to highly nonlinear systems with very nonlinear measurement functional relationships has been proposed and tested by simulation on binary distillation. The simulation results have proved that the proposed methodology can overcome the typical instability problems associated with the Kalman filters. Three extended Kalman filters have been formulated and tested by simulation. The filters have been used to refine a much simplified model sequentially and to estimate parameters such as the unmeasured feed composition using information from the column simulation. It is first assumed that corrupted tray composition measurements are made available to the filter and then corrupted tray temperature measurements are accessed instead. The simulation results have demonstrated the powerful capability of the Kalman filters to overcome the typical hardware problems associated with the operation of on-line analyzers in relation to distillation dynamics and control by, in effect, replacirig them. A method of implementing estimator-aided feedforward (EAFF) control schemes has been proposed and tested by simulation on binary distillation. The results have shown that the EAFF scheme provides much better control and energy conservation than the conventional feedback temperature control in the face of a sustained step change in the feed rate or multiple changes in the feed rate, composition and temperature. Further extensions of this work are recommended as regards simulation, estimation and EAFF control.
Resumo:
The thesis describes an investigation into methods for the design of flexible high-speed product processing machinery, consisting of independent electromechanically actuated machine functions which operate under software coordination and control. An analysis is made of the elements of traditionally designed cam-actuated, mechanically coupled machinery, so that the operational functions and principal performance limitations of the separate machine elements may be identified. These are then used to define the requirements for independent actuators machinery, with a discussion of how this type of design approach is more suited to modern manufacturing trends. A distributed machine controller topology is developed which is a hybrid of hierarchical and pipeline control. An analysis is made, with the aid of dynamic simulation modelling, which confirms the suitability of the controller for flexible machinery control. The simulations include complex models of multiple independent actuators systems, which enable product flow and failure analyses to be performed. An analysis is made of high performance brushless d.c. servomotors and their suitability for actuating machine motions is assessed. Procedures are developed for the selection of brushless servomotors for intermittent machine motions. An experimental rig is described which has enabled the actuation and control methods developed to be implemented. With reference to this, an evaluation is made of the suitability of the machine design method and a discussion is given of the developments which are necessary for operational independent actuators machinery to be attained.
Resumo:
This thesis records the design and development of an electrically driven, air to water, vapour compression heat pump of nominally 6kW heat output, for residential space heating. The study was carried out on behalf of GEC Research Ltd through the Interdisciplinary Higher Degrees Scheme at Aston University. A computer based mathematical model of the vapour compression cycle was produced as a design aid, to enable the effects of component design changes or variations in operating conditions to be predicted. This model is supported by performance testing of the major components, which revealed that improvements in the compressor isentropic efficiency offer the greatest potential for further increases in cycle COPh. The evaporator was designed from first principles, and is based on wire-wound heat transfer tubing. Two evaporators, of air side area 10.27 and 16.24m2, were tested in a temperature and humidity controlled environment, demonstrating that the benefits of the large coil are greater heat pump heat output and lower noise levels. A systematic study of frost growth rates suggested that this problem is most severe at the conditions of saturated air at 0oC combined with low condenser water temperature. A dynamic simulation model was developed to predict the in-service performance of the heat pump. This study confirmed the importance of an adequate radiator area for heat pump installations. A prototype heat pump was designed and manufactured, consisting of a hermetic reciprocating compressor, a coaxial tube condenser and a helically coiled evaporator, using Refrigerant 22. The prototype was field tested in a domestic environment for one and a half years. The installation included a comprehensive monitoring system. Initial problems were encountered with defrosting and compressor noise, both of which were solved. The unit then operated throughout the 1985/86 heating season without further attention, producing a COPh of 2.34.
Resumo:
The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.
Resumo:
A high frequency physical phase variable electric machine model was developed using FE analysis. The model was implemented in a machine drive environment with hardware-in-the-loop. The novelty of the proposed model is that it is derived based on the actual geometrical and other physical information of the motor, considering each individual turn in the winding. This is the first attempt to develop such a model to obtain high frequency machine parameters without resorting to expensive experimental procedures currently in use. The model was used in a dynamic simulation environment to predict inverter-motor interaction. This includes motor terminal overvoltage, current spikes, as well as switching effects. In addition, a complete drive model was developed for electromagnetic interference (EMI) analysis and evaluation. This consists of the lumped parameter models of different system components, such as cable, inverter, and motor. The lumped parameter models enable faster simulations. The results obtained were verified by experimental measurements and excellent agreements were obtained. A change in the winding arrangement and its influence on the motor high frequency behavior has also been investigated. This was shown to have a little effect on the parameter values and in the motor high frequency behavior for equal number of turns. An accurate prediction of overvoltage and EMI in the design stages of the drive system would reduce the time required for the design modifications as well as for the evaluation of EMC compliance issues. The model can be utilized in the design optimization and insulation selection for motors. Use of this procedure could prove economical, as it would help designers develop and test new motor designs for the evaluation of operational impacts in various motor drive applications.