990 resultados para Dynamic Fracture
Resumo:
We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1–3 D, 0.2 Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 μm) and coma (0.34, 0.94 μm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.
Resumo:
This paper explores how game authoring tools can teach processes that transform everyday places into engaging learning spaces. It discusses the motivation inherent in playing games and creating games for others, and how this stimulates an iterative process of creation and reflection and evokes a natural desire to engage in learning. The use of MiLK at the Adelaide Botanic Gardens is offered as a case in point. MiLK is an authoring tool that allows students and teachers to create and share SMS games for mobile phones. A group of South Australian high school students used MiLK to play a game, create their own games and play each other’s games during a day at the gardens. This paper details the learning processes involved in these activities and how the students, without prompting, reflected on their learning, conducted peer assessment, and engaged in a two-way discussion with their teacher about new technologies and their implications for learning. The paper concludes with a discussion of the needs and requirements of 21st century learners and how MiLK can support constructivist and connectivist teaching methods that engage learners and will produce an appropriately skilled future workforce.
Resumo:
Despite the numerous observations that dynamic capabilities lie at the source of competitive advantage, we still have limited knowledge as to how access to firm-based resources and changes to these affect the development of dynamic capabilities. In this paper, we examine founder human capital, access to employee human capital, access to technological expertise, access to other specific expertise, and access to two types of tangible resources in a sample of new firms in Sweden. We empirically measure four dynamic capabilities and find that the nature and effect of resources employed in the development of these capabilities vary greatly. For the most part, there are positive effects stemming from access to particular resources. However, for some resources, such as access to employee human capital and access to financial capital, unexpected negative effects also appear. This study therefore provides statistical evidence as to the varying role of resources in capability development. Importantly, we also find that changes in resource bases have more influential roles in the development of dynamic capabilities than the resource stock variables that were measured at an earlier stage of firm development. This provides empirical support for the notion of treating the firm as a dynamic flow of resources as opposed to a static stock. This finding also highlights the importance of longitudinal designs in studies of dynamic capability development. Further recommendations for future empirical studies of dynamic capabilities are presented.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
Networks are having a profound impact on the way society is organised at the local, national and international level. Networks are not ‘business as usual’. The defining feature of networks and a key indicator for their success is the strength and quality of the interactions between members. This relational power of networks provides the mechanism to bring together previously dispersed and even competitive entities into a collective venture. Such an operating context demands the ability to work in a more horizontal, relational manner. In addition a social infrastructure must be formed that will support and encourage efforts to become more collaborative. This paper seeks to understand how network members come to know about working in networks, how they work on their relationships and create new meanings about the nature of their linked work. In doing so, it proposes that learning, language and leadership, herein defined as the ‘3Ls’ represent critical mediating aspects for networks.
Resumo:
Supply chain relationships between firms are increasingly important in terms of both competitiveness and developing dynamic capability to respond to rapid changes in the market. Innovation capacity both in firms and in supply chains is also integral to responding to dynamic markets and customer needs. This explorative research examines a sample of firms active in supply chain relationships in Australia, as a pilot study, to examine any linkages between firm dynamic capabilities and supply chains developing innovative capacity to meet competitive and market changes. Initial findings indicate that although firms focus on developing capabilities, particularly dynamic capabilities to innovate individually, these preliminary findings indicate little reliance on developing their supply chain innovation capacity. This study is the initial stage of more extensive research on this topic.
Resumo:
The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.
Resumo:
The healing process for bone fractures is sensitive to mechanical stability and blood supply at the fracture site. Most currently available mechanobiological algorithms of bone healing are based solely on mechanical stimuli, while the explicit analysis of revascularization and its influences on the healing process have not been thoroughly investigated in the literature. In this paper, revascularization was described by two separate processes: angiogenesis and nutrition supply. The mathematical models for angiogenesis and nutrition supply have been proposed and integrated into an existing fuzzy algorithm of fracture healing. The computational algorithm of fracture healing, consisting of stress analysis, analyses of angiogenesis and nutrient supply, and tissue differentiation, has been tested on and compared with animal experimental results published previously. The simulation results showed that, for a small and medium-sized fracture gap, the nutrient supply is sufficient for bone healing, for a large fracture gap, non-union may be induced either by deficient nutrient supply or inadequate mechanical conditions. The comparisons with experimental results demonstrated that the improved computational algorithm is able to simulate a broad spectrum of fracture healing cases and to predict and explain delayed unions and non-union induced by large gap sizes and different mechanical conditions. The new algorithm will allow the simulation of more realistic clinical fracture healing cases with various fracture gaps and geometries and may be helpful to optimise implants and methods for fracture fixation.
Resumo:
The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.
Resumo:
In a typical collaborative application, users contends for common resources by mutual exclusion. The introduction of multi-modal environment, however, introduced problems such as frequent dropping of connection or limited connectivity speed of mobile users. This paper target 3D resources which require additional considerations such as dependency of users' manipulation command. This paper introduces Dynamic Locking Synchronisation technique to enable seamless and collaborative environment for large number of user, by combining the contention-free concepts of locking mechanism and the seamless nature of lockless design.