985 resultados para Dust Devils Tracks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we discuss the possibility of cosmic defects being responsible for the B-mode signal measured by the BICEP2 collaboration. We also allow for the presence of other cosmological sources of B-modes such as inflationary gravitational waves and polarized dust foregrounds, which might contribute to or dominate the signal. On the one hand, we find that defects alone give a poor fit to the data points. On the other, we find that defects help to improve the fit at higher multipoles when they are considered alongside inflationary gravitational waves or polarized dust. Finally, we derive new defect constraints from models combining defects and dust. This proceeding is based on previous works [1, 2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Whole-core magnetic susceptibility can sometimes be used as a rapid and sensitive indicator of variations in the concentration of terrigenous material. We apply this approach to study the evolution of Plio-Pleistocene climatic cycles of terrigenous sedimentation at Ocean Drilling Program Site 721, on the Owen Ridge in the Arabian Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depending on the temperature and the magnitude and orientation of an external magnetic field, the critical current density, J c , of a coated conductor can be limited either by the properties of the grain boundaries or by those of the grains. In order to ascertain what governs J c under different conditions, we have measured straight and curved tracks, patterned into RABiTS-MOD samples, while a magnetic field was swept in the plane of the films. Significantly different results were obtained at different field and temperature ranges, which we were able to attribute to J c being limited by either grain boundaries or grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space.