953 resultados para Distribution system optimization
Resumo:
Finnish food producers' trade with Russia has experienced profound changes since the collapse of the Soviet Union. Simultaneously, the distribution systems of foodstuffs have changed remarkably. This study sheds some light into these changes and analyses the current situation in distribution systems of foodstuffs in Russia. In addition, the study discusses the possibilities of Finnish food producers to get more of their products to the shelves of Russian food retail stores. Before the 1998 financial crisis, the import of foreign foodstuffs was booming in Russia due to the overvalued rouble. As a result of the financial crisis, food import collapsed. The export of Finnish foodstuffs to Russia has been slowly recovering during the past few years, but in the most important product categories the pre-crisis levels have so far not been reached and maybe will not be reached. In certain product categories the growth has been only marginal. It seems that starting localproduction will become increasingly important in the future. This is further encouraged by the fact that Russian consumers favour domestic food products. Russian consumers are very price conscious and demand quality in food products. The perceived price-quality ratio is an important criterion in the purchase decision.The majority of foodstuff retail is still conducted via unorganised forms of trade (e.g. kiosks and marketplaces) but modern retail chains are developing at a fast pace in Russia. They are also expected to dominate the retail trade in foodstuffs over the unorganised forms of trade in the future. This will change the distribution systems as well. The retail chains are trying to shorten the distribution chain, similarly to what has been seen in the Western countries. This together with the strengthening of retail chains is likely to shrink the role of wholesalers, as the chains increasingly want to work directly with the producers. Many large retail chains are acquiring or have already acquired a distribution centre or centres in order to boost efficiency and control the flow of products. The strengthening of the retail chains also gives them power in negotiations, which the producers and distributors have to adjust to. For example store entry fees and retail chains' own private label products pose challenges to the food producers. In the food production sector the competition is fierce, as large Russianand foreign producers want to ensure their piece of the market. The largest producers utilise their size: they invest in big marketing campaigns and are willing to pay high entry fees to retail chains in order to secure a place on the store shelves and to build a strong brand in Russia. This complicates the situation from the viewpoint of small producers. Currently, the most popular type of distribution system among the interviewed Finnish food producers is based on a network of local distributors. There is, however, a strong consensus on the importanceof starting local production in order to be a serious actor in Russia in the future. Factors that hinder the starting of local production include the lack of local infrastructure and qualified staff, and the low risk tolerance of Finnish firms. Major barriers for entry in Russia are the actions of authorities, fierce competition, fragmented market and Finnish producers' heavy production costs. The suggested strategies for increasing the market share include focusing geographically or segment-wise, introducing new products, starting local production, andcooperation between Finnish producers. Smallness was one reason why Finnish producers had to cut down their operations in Russia due to the 1998 crisis. Smaller producers had fewer resources to tolerate losses during the period of crisis. Smallness is reflected also on trade negotiations with retail chains and distributors. It makes it harder to cope with the store entry fees and to differentiatefrom the mass of products propped up by expensive advertising. Finally, it makes it harder for Finnish producers to start or expand local production, as it is more difficult for a small producer to get financing and to tolerate the increased risks. Compensating for the smallness might become the crucial factor determining the future success of Finnish food producers in the Russian market.
Resumo:
Since it is virtually impossible to balance loads in three-phase system, unbalance in a varying degree exists almost in all distribution networks. The aim of the thesis is to analyze the impact of this unbalance subject to different configurations of distribution system and winding connection of the supplying transformer. Also impact of the voltage unbalance on the equipment is investigated. In order to make the investigation more visual, the following calculations have been conducted: - Unsymmetrical load in four-wire star connected network - Unsymmetrical load in four-wire star connected network with broken zero conductor (or three-wire network). - Unsymmetrical load when the supplying transformer is so-called zigzag transformer. PDF created
Resumo:
Tämän diplomityön tavoitteena oli luoda suuren teollisuuslaitoksen suur- ja keskijännitesähkönjakelujärjestelmälle ennakkohuoltosuunnitelmaesitys, joka selkeyttää järjestelmän ennakkohuoltotoimintaa. Ennakkohuoltosuunnitelmaesityksen perusteella voidaan tulevaisuudessa luoda ennakkohuolto-ohjelma kunnossapitojärjestelmään. Ennakkohuoltosuunnitelmaesityksen kehittäminen aloitettiin selvittämällä suur- ja keskijännitesähkönjakelujärjestelmien ennakkohuoltotoimintaan vaikuttavaa lainsäädäntöä, määräyksiä, ohjeita sekä standardeja. Myös sähkönjakelujärjestelmän komponenttien luotettavuudesta ja pitoajasta saatavilla olevaa informaatiota etsittiin eri lähteistä. Tutkittavana olevaan suur- ja keskijännitesähkönjakelujärjestelmään perehtymisen yhteydessä selvitettiin myös järjestelmän komponenttien varaosatilanne, sekä järjestelmässä käytettävissä olevat varayhteydet. Tutkittavalle suur- ja keskijännitesähkönjakelujärjestelmälle suoritettiin kriittisyysluokittelu, sekä selvitettiin järjestelmän ennakkohuoltotoiminnan nykytilanne. Lisäksi tutkittiin järjestelmän vikahistoriakirjauksia kymmenen vuoden ajalta. Työn viimeisessä osassa laadittiin ennakkohuoltosuunnitelmaesitys tutkittavalle suur- ja keskijännitesähkönjakelujärjestelmälle. Ennakkohuoltosuunnitelmaesitykseen ovat osaltaan vaikuttaneet suoritettu kriittisyysluokittelu sekä vikahistoriasta selvinneet asiat. Lisäksi työssä tutustuttiin sähkönjakelun ennakkohuoltotöiden optimointiin. Työssä esiteltiin optimointilaskennan laskentayhtälöt, sekä suoritettiin esimerkkioptimointilaskenta kuvitteellisen sähkönjakelujärjestelmän muuntajien ennakkohuollolle.
Resumo:
Existing electricity distribution system is under pressure because implementation of distributed generation changes the grid configuration and also because some customers demand for better distribution reliability. In a short term, traditional network planning does not offer techno-economical solutions for the challenges and therefore the idea of microgrids is introduced. Islanding capability of microgrids is expected to enable better reliability by reducing effects of faults. The aim of the thesis is to discuss challenges in integration of microgrids into distribution networks. Study discusses development of microgrid related smart grid features and gives estimation of the guideline of microgrid implementation. Thesis also scans microgrid pilots around the world and introduces the most relevant projects. Analysis reveals that the main focus of researched studies is on low voltage microgrids. This thesis extends the idea to medium voltage distribution system and introduces challenges related to medium voltage microgrid implementation. Differences of centralized and distributed microgrid models are analyzed and the centralized model is discovered to be easiest to implement into existing distribution system. Preplan of medium voltage microgrid pilot is also carried out in this thesis.
Resumo:
The focus in this thesis is to study both technical and economical possibilities of novel on-line condition monitoring techniques in underground low voltage distribution cable networks. This thesis consists of literature study about fault progression mechanisms in modern low voltage cables, laboratory measurements to determine the base and restrictions of novel on-line condition monitoring methods, and economic evaluation, based on fault statistics and information gathered from Finnish distribution system operators. This thesis is closely related to master’s thesis “Channel Estimation and On-line Diagnosis of LV Distribution Cabling”, which focuses more on the actual condition monitoring methods and signal theory behind them.
Resumo:
The maintenance of electric distribution network is a topical question for distribution system operators because of increasing significance of failure costs. In this dissertation the maintenance practices of the distribution system operators are analyzed and a theory for scheduling maintenance activities and reinvestment of distribution components is created. The scheduling is based on the deterioration of components and the increasing failure rates due to aging. The dynamic programming algorithm is used as a solving method to maintenance problem which is caused by the increasing failure rates of the network. The other impacts of network maintenance like environmental and regulation reasons are not included to the scope of this thesis. Further the tree trimming of the corridors and the major disturbance of the network are not included to the problem optimized in this thesis. For optimizing, four dynamic programming models are presented and the models are tested. Programming is made in VBA-language to the computer. For testing two different kinds of test networks are used. Because electric distribution system operators want to operate with bigger component groups, optimal timing for component groups is also analyzed. A maintenance software package is created to apply the presented theories in practice. An overview of the program is presented.
Resumo:
The Finnish electricity distribution sector, rural areas in particular, is facing major challenges because of the economic regulation, tightening supply security requirements and the ageing network asset. Therefore, the target in the distribution network planning and asset management is to develop and renovate the networks to meet these challenges in compliance with the regulations in an economically feasible way. Concerning supply security, the new Finnish Electricity Market Act limits the maximum duration of electricity supply interruptions to six hours in urban areas and 36 hours in rural areas. This has a significant impact on distribution network planning, especially in rural areas where the distribution networks typically require extensive modifications and renovations to meet the supply security requirements. This doctoral thesis introduces a methodology to analyse electricity distribution system development. The methodology is based on and combines elements of reliability analysis, asset management and economic regulation. The analysis results can be applied, for instance, to evaluate the development of distribution reliability and to consider actions to meet the tightening regulatory requirements. Thus, the methodology produces information for strategic decision-making so that DSOs can respond to challenges arising in the electricity distribution sector. The key contributions of the thesis are a network renovation concept for rural areas, an analysis to assess supply security, and an evaluation of the effects of economic regulation on the strategic network planning. In addition, the thesis demonstrates how the reliability aspect affects the placement of automation devices and how the reserve power can be arranged in a rural area network.
Resumo:
Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.
Power Electronic Converters in Low-Voltage Direct Current Distribution – Analysis and Implementation
Resumo:
Over the recent years, smart grids have received great public attention. Many proposed functionalities rely on power electronics, which play a key role in the smart grid, together with the communication network. However, “smartness” is not the driver that alone motivates the research towards distribution networks based on power electronics; the network vulnerability to natural hazards has resulted in tightening requirements for the supply security, set both by electricity end-users and authorities. Because of the favorable price development and advancements in the field, direct current (DC) distribution has become an attractive alternative for distribution networks. In this doctoral dissertation, power electronic converters for a low-voltage DC (LVDC) distribution system are investigated. These include the rectifier located at the beginning of the LVDC network and the customer-end inverter (CEI) on the customer premises. Rectifier topologies are introduced, and according to the LVDC system requirements, topologies are chosen for the analysis. Similarly, suitable CEI topologies are addressed and selected for study. Application of power electronics into electricity distribution poses some new challenges. Because the electricity end-user is supplied with the CEI, it is responsible for the end-user voltage quality, but it also has to be able to supply adequate current in all operating conditions, including a short-circuit, to ensure the electrical safety. Supplying short-circuit current with power electronics requires additional measures, and therefore, the short-circuit behavior is described and methods to overcome the high-current supply to the fault are proposed. Power electronic converters also produce common-mode (CM) and radio-frequency (RF) electromagnetic interferences (EMI), which are not present in AC distribution. Hence, their magnitudes are investigated. To enable comprehensive research on the LVDC distribution field, a research site was built into a public low-voltage distribution network. The implementation was a joint task by the LVDC research team of Lappeenranta University of Technology and a power company Suur-Savon S¨ahk¨o Oy. Now, the measurements could be conducted in an actual environment. This is important especially for the EMI studies. The main results of the work concern the short-circuit operation of the CEI and the EMI issues. The applicability of the power electronic converters to electricity distribution is demonstrated, and suggestions for future research are proposed.
Resumo:
This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.
Resumo:
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
Resumo:
In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.
Resumo:
Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.
Resumo:
Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.