898 resultados para Discrete wavelet transforms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Features derived from the trispectra of DFT magnitude slices are used for multi-font digit recognition. These features are insensitive to translation, rotation, or scaling of the input. They are also robust to noise. Classification accuracy tests were conducted on a common data base of 256× 256 pixel bilevel images of digits in 9 fonts. Randomly rotated and translated noisy versions were used for training and testing. The results indicate that the trispectral features are better than moment invariants and affine moment invariants. They achieve a classification accuracy of 95% compared to about 81% for Hu's (1962) moment invariants and 39% for the Flusser and Suk (1994) affine moment invariants on the same data in the presence of 1% impulse noise using a 1-NN classifier. For comparison, a multilayer perceptron with no normalization for rotations and translations yields 34% accuracy on 16× 16 pixel low-pass filtered and decimated versions of the same data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phase of an analytic signal constructed from the autocorrelation function of a signal contains significant information about the shape of the signal. Using Bedrosian's (1963) theorem for the Hilbert transform it is proved that this phase is robust to multiplicative noise if the signal is baseband and the spectra of the signal and the noise do not overlap. Higher-order spectral features are interpreted in this context and shown to extract nonlinear phase information while retaining robustness. The significance of the result is that prior knowledge of the spectra is not required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For clinical use, in electrocardiogram (ECG) signal analysis it is important to detect not only the centre of the P wave, the QRS complex and the T wave, but also the time intervals, such as the ST segment. Much research focused entirely on qrs complex detection, via methods such as wavelet transforms, spline fitting and neural networks. However, drawbacks include the false classification of a severe noise spike as a QRS complex, possibly requiring manual editing, or the omission of information contained in other regions of the ECG signal. While some attempts were made to develop algorithms to detect additional signal characteristics, such as P and T waves, the reported success rates are subject to change from person-to-person and beat-to-beat. To address this variability we propose the use of Markov-chain Monte Carlo statistical modelling to extract the key features of an ECG signal and we report on a feasibility study to investigate the utility of the approach. The modelling approach is examined with reference to a realistic computer generated ECG signal, where details such as wave morphology and noise levels are variable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel combined near- and mid-infrared (NIR and MIR) spectroscopic method has been researched and developed for the analysis of complex substances such as the Traditional Chinese Medicine (TCM), Illicium verum Hook. F. (IVHF), and its noxious adulterant, Iuicium lanceolatum A.C. Smith (ILACS). Three types of spectral matrix were submitted for classification with the use of the linear discriminant analysis (LDA) method. The data were pretreated with either the successive projections algorithm (SPA) or the discrete wavelet transform (DWT) method. The SPA method performed somewhat better, principally because it required less spectral features for its pretreatment model. Thus, NIR or MIR matrix as well as the combined NIR/MIR one, were pretreated by the SPA method, and then analysed by LDA. This approach enabled the prediction and classification of the IVHF, ILACS and mixed samples. The MIR spectral data produced somewhat better classification rates than the NIR data. However, the best results were obtained from the combined NIR/MIR data matrix with 95–100% correct classifications for calibration, validation and prediction. Principal component analysis (PCA) of the three types of spectral data supported the results obtained with the LDA classification method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Balance and stability are very important for everybody and especially for sports-person who undergo extreme physical activities. Balance and stability exercises not only have a great impact on the performance of the sportsperson but also play a pivotal role in their rehabilitation. Therefore, it is very essential to have knowledge about a sportsperson’s balance and also to quantify the same. In this work, we propose a system consisting of a wobble board, with a gyro enhanced orientation sensor and a motion display for visual feedback to help the sportsperson improve their stability. The display unit gives in real time the orientation of the wobble board, which can help the sportsperson to apply necessary corrective forces to maintain neutral position. The system is compact and portable. We also quantify balance and stability using power spectral density. The sportsperson is made stand on the wobble board and the angular orientation of the wobble board is recorded for each 0.1 second interval. The signal is analized using discrete Fourier transforms. The power of this signal is related to the stability of the subject. This procedure is used to measure the balance and stability of an elite cricket team. Representative results are shown below: Table 1 represents power comparison of two subjects and Table 2 represents power comparison of left leg and right leg of one subject. This procedure can also be used in clinical practice to monitor improvement in stability dysfunction of sportsperson with injuries or other related problems undergoing rehabilitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the design of a full fledged OCR system for printed Kannada text. The machine recognition of Kannada characters is difficult due to similarity in the shapes of different characters, script complexity and non-uniqueness in the representation of diacritics. The document image is subject to line segmentation, word segmentation and zone detection. From the zonal information, base characters, vowel modifiers and consonant conjucts are separated. Knowledge based approach is employed for recognizing the base characters. Various features are employed for recognising the characters. These include the coefficients of the Discrete Cosine Transform, Discrete Wavelet Transform and Karhunen-Louve Transform. These features are fed to different classifiers. Structural features are used in the subsequent levels to discriminate confused characters. Use of structural features, increases recognition rate from 93% to 98%. Apart from the classical pattern classification technique of nearest neighbour, Artificial Neural Network (ANN) based classifiers like Back Propogation and Radial Basis Function (RBF) Networks have also been studied. The ANN classifiers are trained in supervised mode using the transform features. Highest recognition rate of 99% is obtained with RBF using second level approximation coefficients of Haar wavelets as the features on presegmented base characters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently we have developed a new form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. This introduces limited redundancy (2 m:1 for m-dimensional signals) and allows the transform to provide approximate shift invariance and directionally selective filters (properties lacking in the traditional wavelet transform) while preserving the usual properties of perfect reconstruction and computational efficiency with good well-balanced frequency responses. In this paper we analyse why the new transform can be designed to be shift invariant, and describe how to estimate the accuracy of this approximation and design suitable filters to achieve this.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

基于量化索引调制(QIM)的隐写技术正日益受到隐写分析的威胁。该文将通常在DCT域隐写的做法改为在非均匀DCT域进行,将参数作为密钥,提出了一种NDCT-QIM图像隐写方法。由于在攻击者猜测的域中,嵌入信号具有扩散性,NDCT-QIM方法不利于隐写分析对隐写特征的检测,分析和实验表明,它能够更好地抵御基于梯度能量、直方图及小波统计特征等常用统计量的隐写分析,增强了隐写的隐蔽性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Offshore seismic exploration is full of high investment and risk. And there are many problems, such as multiple. The technology of high resolution and high S/N ratio on marine seismic data processing is becoming an important project. In this paper, the technology of multi-scale decomposition on both prestack and poststack seismic data based on wavelet and Hilbert-Huang transform and the theory of phase deconvolution is proposed by analysis of marine seismic exploration, investigation and study of literatures, and integration of current mainstream and emerging technology. Related algorithms are studied. The Pyramid algorithm of decomposition and reconstruction had been given by the Mallat algorithm of discrete wavelet transform In this paper, it is introduced into seismic data processing, the validity is shown by test with field data. The main idea of Hilbert-Huang transform is the empirical mode decomposition with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions that admit well-behaved Hilbert transform. After the decomposition, a analytical signal is constructed by Hilbert transform, from which the instantaneous frequency and amplitude can be obtained. And then, Hilbert spectrum. This decomposition method is adaptive and highly efficient. Since the decomposition is based on the local characteristics of the time scale of data, it is applicable to nonlinear and non-stationary processes. The phenomenons of fitting overshoot and undershoot and end swings are analyzed in Hilbert-Huang transform. And these phenomenons are eliminated by effective method which is studied in the paper. The technology of multi-scale decomposition on both prestack and poststack seismic data can realize the amplitude preserved processing, enhance the seismic data resolution greatly, and overcome the problem that different frequency components can not restore amplitude properly uniformly in the conventional method. The method of phase deconvolution, which has overcome the minimum phase limitation in traditional deconvolution, approached the base fact well that the seismic wavelet is phase mixed in practical application. And a more reliable result will be given by this method. In the applied research, the high resolution relative amplitude preserved processing result has been obtained by careful analysis and research with the application of the methods mentioned above in seismic data processing in four different target areas of China Sea. Finally, a set of processing flow and method system was formed in the paper, which has been carried on in the application in the actual production process and has made the good progress and the huge economic benefit.