984 resultados para Discrete mass modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest priority part whenever possible, and operating on lower priority parts only when unable to produce those with higher priorities. We develop a new decomposition method to analyze the behavior of the manufacturing system by decomposing the long production line into small analytically tractable components. As a first step in modeling a production line with more than one part type, we restrict ourselves to the case where there are two part types. Detailed modeling and derivations are presented with a small two-part-type production line that consists of two processing machines and two demand machines. Then, a generalized longer flow line is analyzed. Furthermore, estimates for performance measures, such as average buffer levels and production rates, are presented and compared to extensive discrete event simulation. The quantitative behavior of the two-part type processing line under different demand scenarios is also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used to simulate mass balances of Nigardsbreen (Norway) and Rhonegletscher (Switzerland). Simulations using reanalyses (ECMWF) for the period 1979–93 are in good agreement with in situ mass balance measurements for Nigardsbreen. The method is applied to multicentury integrations of coupled (ECHAM4/OPYC) and mixed-layer (ECHAM4/MLO) GCMs excluding external forcing. A high correlation between decadal variations in the North Atlantic oscillation (NAO) and mass balance of the glaciers is found. The dominant factor for this relationship is the strong impact of winter precipitation associated with the NAO. A high NAO phase means enhanced (reduced) winter precipitation for Nigardsbreen (Rhonegletscher), typically leading to a higher (lower) than normal annual mass balance. This mechanism, entirely due to internal variations in the climate system, can explain observed strong positive mass balances for Nigardsbreen and other maritime Norwegian glaciers within the period 1980–95. It can also partly be responsible for recent strong negative mass balances of Alpine glaciers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modèle Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17–20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three-dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3–4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone–depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theories on the link between achievement goals and achievement emotions focus on their within-person functional relationship (i.e., intraindividual relations). However, empirical studies have failed to analyze these intraindividual relations and have instead examined between-person covariation of the two constructs (i.e., interindividual relations). Aiming to better connect theory and empirical research, the present study (N = 120 10th grade students) analyzed intraindividual relations by assessing students’ state goals and emotions using experience sampling (N = 1,409 assessments within persons). In order to replicate previous findings on interindividual relations, students’ trait goals and emotions were assessed using self-report questionnaires. Despite being statistically independent, both types of relations were consistent with theoretical expectations, as shown by multi-level modeling: Mastery goals were positive predictors of enjoyment and negative predictors of boredom and anger; performance-approach goals were positive predictors of pride; and performance-avoidance goals were positive predictors of anxiety and shame. Reasons for the convergence of intra- and interindividual findings, directions for future research, and implications for educational practice are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this analysis, using available hourly and daily radiometric data performed at Botucatu, Brazil, several empirical models relating ultraviolet (UV), photosynthetically active (PAR) and near infrared (NIR) solar global components with solar global radiation (G) are established. These models are developed and discussed through clearness index K(T) (ratio of the global-to-extraterrestrial solar radiation). Results obtained reveal that the proposed empirical models predict hourly and daily values accurately. Finally. the overall analysis carried Out demonstrates that the sky conditions are more important in developing correlation models between the UV component and the global solar radiation. The linear regression models derived to estimate PAR and NIR components may be obtained without sky condition considerations within a maximum variation of 8%. In the case of UV, not taking into consideration the sky condition may cause a discrepancy of up to 18% for hourly values and 15% for daily values. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present different ofrailtyo models to analyze longitudinal data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. Assuming a CD4 counting data set in HIV-infected patients, we develop a hierarchical Bayesian analysis considering the different proposed models and using Markov Chain Monte Carlo methods. We also discuss some Bayesian discrimination aspects for the choice of the best model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical modeling has been extensively applied to the study and development of fuel cells. In this work, the objective is to characterize a mechanistic model for the anode of a direct ethanol fuel cell and perform appropriate simulations. The software Comsol Multiphysics (R) (and the Chemical Engineering Module) was used in this work. The software Comsol Multiphysics (R) is an interactive environment for modeling scientific and engineering applications using partial differential equations (PDEs). Based on the finite element method, it provides speed and accuracy for several applications. The mechanistic model developed here can supply details of the physical system, such as the concentration profiles of the components within the anode and the coverage of the adsorbed species on the electrode surface. Also, the anode overpotential-current relationship can be obtained. To validate the anode model presented in this paper, experimental data obtained with a single fuel cell operating with an ethanol solution at the anode were used. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was 1) to validate the 0.5 body-mass exponent for maximal oxygen uptake (V. O2max) as the optimal predictor of performance in a 15 km classical-technique skiing competition among elite male cross-country skiers and 2) to evaluate the influence of distance covered on the body-mass exponent for V. O2max among elite male skiers. Twenty-four elite male skiers (age: 21.4±3.3 years [mean ± standard deviation]) completed an incremental treadmill roller-skiing test to determine their V. O2max. Performance data were collected from a 15 km classicaltechnique cross-country skiing competition performed on a 5 km course. Power-function modeling (ie, an allometric scaling approach) was used to establish the optimal body-mass exponent for V . O2max to predict the skiing performance. The optimal power-function models were found to be race speed = 8.83⋅(V . O2max m-0.53) 0.66 and lap speed = 5.89⋅(V . O2max m-(0.49+0.018lap)) 0.43e0.010age, which explained 69% and 81% of the variance in skiing speed, respectively. All the variables contributed to the models. Based on the validation results, it may be recommended that V. O2max divided by the square root of body mass (mL⋅min−1 ⋅kg−0.5) should be used when elite male skiers’ performance capability in 15 km classical-technique races is evaluated. Moreover, the body-mass exponent for V . O2max was demonstrated to be influenced by the distance covered, indicating that heavier skiers have a more pronounced positive pacing profile (ie, race speed gradually decreasing throughout the race) compared to that of lighter skiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By modeling the spectral energy distribution (SED) of the W3 IRS5 high-mass star formation region and matching this model to observed data, we can constrain the physical parameters of the basic system geometry and cloud mass distribution. From these parameters, we hope to add to the understanding of high-mass star formation processes. In particular, we hope to determine if the geometries associated with lowmass star formation carry over into the high-mass regime.