929 resultados para Discrete Wavelet Analysis
Resumo:
Effective conservation and management of top predators requires a comprehensive understanding of their distributions and of the underlying biological and physical processes that affect these distributions. The Mid-Atlantic Bight shelf break system is a dynamic and productive region where at least 32 species of cetaceans have been recorded through various systematic and opportunistic marine mammal surveys from the 1970s through 2012. My dissertation characterizes the spatial distribution and habitat of cetaceans in the Mid-Atlantic Bight shelf break system by utilizing marine mammal line-transect survey data, synoptic multi-frequency active acoustic data, and fine-scale hydrographic data collected during the 2011 summer Atlantic Marine Assessment Program for Protected Species (AMAPPS) survey. Although studies describing cetacean habitat and distributions have been previously conducted in the Mid-Atlantic Bight, my research specifically focuses on the shelf break region to elucidate both the physical and biological processes that influence cetacean distribution patterns within this cetacean hotspot.
In Chapter One I review biologically important areas for cetaceans in the Atlantic waters of the United States. I describe the study area, the shelf break region of the Mid-Atlantic Bight, in terms of the general oceanography, productivity and biodiversity. According to recent habitat-based cetacean density models, the shelf break region is an area of high cetacean abundance and density, yet little research is directed at understanding the mechanisms that establish this region as a cetacean hotspot.
In Chapter Two I present the basic physical principles of sound in water and describe the methodology used to categorize opportunistically collected multi-frequency active acoustic data using frequency responses techniques. Frequency response classification methods are usually employed in conjunction with net-tow data, but the logistics of the 2011 AMAPPS survey did not allow for appropriate net-tow data to be collected. Biologically meaningful information can be extracted from acoustic scattering regions by comparing the frequency response curves of acoustic regions to theoretical curves of known scattering models. Using the five frequencies on the EK60 system (18, 38, 70, 120, and 200 kHz), three categories of scatterers were defined: fish-like (with swim bladder), nekton-like (e.g., euphausiids), and plankton-like (e.g., copepods). I also employed a multi-frequency acoustic categorization method using three frequencies (18, 38, and 120 kHz) that has been used in the Gulf of Maine and Georges Bank which is based the presence or absence of volume backscatter above a threshold. This method is more objective than the comparison of frequency response curves because it uses an established backscatter value for the threshold. By removing all data below the threshold, only strong scattering information is retained.
In Chapter Three I analyze the distribution of the categorized acoustic regions of interest during the daytime cross shelf transects. Over all transects, plankton-like acoustic regions of interest were detected most frequently, followed by fish-like acoustic regions and then nekton-like acoustic regions. Plankton-like detections were the only significantly different acoustic detections per kilometer, although nekton-like detections were only slightly not significant. Using the threshold categorization method by Jech and Michaels (2006) provides a more conservative and discrete detection of acoustic scatterers and allows me to retrieve backscatter values along transects in areas that have been categorized. This provides continuous data values that can be integrated at discrete spatial increments for wavelet analysis. Wavelet analysis indicates significant spatial scales of interest for fish-like and nekton-like acoustic backscatter range from one to four kilometers and vary among transects.
In Chapter Four I analyze the fine scale distribution of cetaceans in the shelf break system of the Mid-Atlantic Bight using corrected sightings per trackline region, classification trees, multidimensional scaling, and random forest analysis. I describe habitat for common dolphins, Risso’s dolphins and sperm whales. From the distribution of cetacean sightings, patterns of habitat start to emerge: within the shelf break region of the Mid-Atlantic Bight, common dolphins were sighted more prevalently over the shelf while sperm whales were more frequently found in the deep waters offshore and Risso’s dolphins were most prevalent at the shelf break. Multidimensional scaling presents clear environmental separation among common dolphins and Risso’s dolphins and sperm whales. The sperm whale random forest habitat model had the lowest misclassification error (0.30) and the Risso’s dolphin random forest habitat model had the greatest misclassification error (0.37). Shallow water depth (less than 148 meters) was the primary variable selected in the classification model for common dolphin habitat. Distance to surface density fronts and surface temperature fronts were the primary variables selected in the classification models to describe Risso’s dolphin habitat and sperm whale habitat respectively. When mapped back into geographic space, these three cetacean species occupy different fine-scale habitats within the dynamic Mid-Atlantic Bight shelf break system.
In Chapter Five I present a summary of the previous chapters and present potential analytical steps to address ecological questions pertaining the dynamic shelf break region. Taken together, the results of my dissertation demonstrate the use of opportunistically collected data in ecosystem studies; emphasize the need to incorporate middle trophic level data and oceanographic features into cetacean habitat models; and emphasize the importance of developing more mechanistic understanding of dynamic ecosystems.
Resumo:
We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thyristor-based onload tap-changing ac voltage stabilizers are cheap and robust. They have replaced most mechanical tap-changers in low voltage applications from 300 VA to 300 M. Nevertheless, this replacement hardily applies to tap-changers associated to transformers feeding medium-voltage lines (typically 69 kV primary, 34.5 kV line, 10 MVA) which need periodical maintenance of contacts and oil. The Electric Power Research Institute (EPRI) has studied the feasibility of this replacement. It detected economical problems derived from the need for series association of thyristors to manage the high voltages involved, and from the current overload developed under line fault. The paper reviews the configurations used in that field and proposes new solutions, using a compensating transformer in the main circuit and multi-winding coils in the commutating circuit, with reduced overload effect and no series association of thyristors, drastically decreasing their number and rating. The stabilizer can be installed at any point of the line and the electronic circuit can be fixed to ground. Subsequent works study and synthesize several commutating circuits in detail.
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Time-frequency and time-scale characterisation of the beat-by-beat high-resolution electrocardiogram
Resumo:
Proceedings of the Sixth Portuguese Conference on Bioemedical Engineering faro, Portugal
Resumo:
Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.
Resumo:
The report addresses the question of what are the preferences of broadband consumers on the Portuguese telecommunication market. A triple play bundle is being investigated. The discrete choice analysis, adopted in the study, base on 110 responses, mainly from NOVA students. The data for the analysis was collected via manually designed on-line survey. The results show that the price attribute is relatively the most important one while the television attribute is being overlooked in the decision making process. Main effects examined in the research are robust. In addition, "extras" components are being tested in terms of users' preferences.
Resumo:
\The idea that social processes develop in a cyclical manner is somewhat like a `Lorelei'. Researchers are lured to it because of its theoretical promise, only to become entangled in (if not wrecked by) messy problems of empirical inference. The reasoning leading to hypotheses of some kind of cycle is often elegant enough, yet the data from repeated observations rarely display the supposed cyclical pattern. (...) In addition, various `schools' seem to exist which frequently arrive at di erent conclusions on the basis of the same data." (van der Eijk and Weber 1987:271). Much of the empirical controversies around these issues arise because of three distinct problems: the coexistence of cycles of di erent periodicities, the possibility of transient cycles and the existence of cycles without xed periodicity. In some cases, there are no reasons to expect any of these phenomena to be relevant. Seasonality caused by Christmas is one such example (Wen 2002). In such cases, researchers mostly rely on spectral analysis and Auto-Regressive Moving-Average (ARMA) models to estimate the periodicity of cycles.1 However, and this is particularly true in social sciences, sometimes there are good theoretical reasons to expect irregular cycles. In such cases, \the identi cation of periodic movement in something like the vote is a daunting task all by itself. When a pendulum swings with an irregular beat (frequency), and the extent of the swing (amplitude) is not constant, mathematical functions like sine-waves are of no use."(Lebo and Norpoth 2007:73) In the past, this di culty has led to two di erent approaches. On the one hand, some researchers dismissed these methods altogether, relying on informal alternatives that do not meet rigorous standards of statistical inference. Goldstein (1985 and 1988), studying the severity of Great power wars is one such example. On the other hand, there are authors who transfer the assumptions of spectral analysis (and ARMA models) into fundamental assumptions about the nature of social phenomena. This type of argument was produced by Beck (1991) who, in a reply to Goldstein (1988), claimed that only \ xed period models are meaningful models of cyclic phenomena".We argue that wavelet analysis|a mathematical framework developed in the mid-1980s (Grossman and Morlet 1984; Goupillaud et al. 1984) | is a very viable alternative to study cycles in political time-series. It has the advantage of staying close to the frequency domain approach of spectral analysis while addressing its main limitations. Its principal contribution comes from estimating the spectral characteristics of a time-series as a function of time, thus revealing how its di erent periodic components may change over time. The rest of article proceeds as follows. In the section \Time-frequency Analysis", we study in some detail the continuous wavelet transform and compare its time-frequency properties with the more standard tool for that purpose, the windowed Fourier transform. In the section \The British Political Pendulum", we apply wavelet analysis to essentially the same data analyzed by Lebo and Norpoth (2007) and Merrill, Grofman and Brunell (2011) and try to provide a more nuanced answer to the same question discussed by these authors: do British electoral politics exhibit cycles? Finally, in the last section, we present a concise list of future directions.
Resumo:
Respiratory syncytial virus (RSV) infection is the leading cause of hospitalisation for respiratory diseases among children under 5 years old. The aim of this study was to analyse RSV seasonality in the five distinct regions of Brazil using time series analysis (wavelet and Fourier series) of the following indicators: monthly positivity of the immunofluorescence reaction for RSV identified by virologic surveillance system, and rate of hospitalisations per bronchiolitis and pneumonia due to RSV in children under 5 years old (codes CID-10 J12.1, J20.5, J21.0 and J21.9). A total of 12,501 samples with 11.6% positivity for RSV (95% confidence interval 11 - 12.2), varying between 7.1 and 21.4% in the five Brazilian regions, was analysed. A strong trend for annual cycles with a stable stationary pattern in the five regions was identified through wavelet analysis of the indicators. The timing of RSV activity by Fourier analysis was similar between the two indicators analysed and showed regional differences. This study reinforces the importance of adjusting the immunisation period for high risk population with the monoclonal antibody palivizumab taking into account regional differences in seasonality of RSV.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
L'étude de la formation d'une communauté épistémique québécoise en santé publique en ayant recours à l'interactionnisme-structural permet d'appréhender ce phénomène social sous l'angle d'une influence réciproque entre d'une part des acteurs sociaux interagissant entre-eux et d'autre part, des conceptualisations variées des objets de santé publique; ces éléments sociaux et sémantiques subissent des transformations simultanées. Notre étude démontre et illustre qu'au même moment où un réseau social de chercheurs prend forme, une thématique nouvelle prend place et rallie ces mêmes chercheurs, non pas seulement dans leurs relations sociales, mais dans les idées qu'ils manipulent lors de leur travail de production et de diffusion de connaissances; les identités sociales se lient, mais pas au hasard, parce qu'elles partagent des éléments sémantiques communs. C'est notamment en explorant 20 ans de collaborations scientifiques à l'aide d'outils d'analyse de réseaux, d'analyse en composantes discrètes et par l'exporation de treillis de Galois que cette étude a été menée. Notre approche est principalement exploratoire et une attention toute particulière est portée sur les aspects méthodologiques et théoriques du travail de recherche scientifique.