957 resultados para Discontinuous Galerkin
Resumo:
We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]
Resumo:
A monotonic decrease in viscosity with increasing shear stress is a known rheological response to shear flow in complex fluids in general and for flocculated suspensions in particular. Here we demonstrate a discontinuous shear-thickening transition on varying shear stress where the viscosity jumps sharply by four to six orders of magnitude in flocculated suspensions of multiwalled carbon nanotubes (MWNT) at very low weight fractions (approximately 0.5%). Rheooptical observations reveal the shear-thickened state as a percolated structure of MWNT flocs spanning the system size. We present a dynamic phase diagram of the non-Brownian MWNT dispersions revealing a starting jammed state followed by shear-thinning and shear-thickened states. The present study further suggests that the shear-thickened state obtained as a function of shear stress is likely to be a generic feature of fractal clusters under flow, albeit under confinement. An understanding of the shear-thickening phenomena in confined geometries is pertinent for flow-controlled fabrication techniques in enhancing the mechanical strength and transport properties of thin films and wires of nanostructured composites as well as in lubrication issues.
Resumo:
The use of an instrumented impact test set-up to evaluate the influence of water ingress on the impact response of a carbon–epoxy (C–E) laminated composite system containing discontinuous buffer strips (BS) has been examined. The data on the BS-free C–E sample in dry conditions are used as reference to compare with the data derived from those immersed in water. The work demonstrated the utility of an instrumented impact test set-up in characterising the response, first owing to the architectural difference due to introduction of buffer strips and then due to the presence of an additional phase in the form of water ingressed into the sample. The presence of water was found to enhance the energy absorption characteristics of the C–E system with BS insertions. It was also noticed that with an increasing number of BS layer insertions, the load–time plots displayed characteristic changes. The ductility indices (DI) were found to display a lower value for the water immersed samples compared to the dry ones.
Resumo:
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
Resumo:
A new type of multi-port isolated bidirectional DC-DC converter is proposed in this study. In the proposed converter, transfer of power takes place through addition of magnetomotive forces generated by multiple windings on a common transformer core. This eliminates the need for a centralised storage capacitor to interface all the ports. Hence, the requirement of an additional power transfer stage from the centralised capacitor can also be eliminated. The converter can be used for a multi-input, multi-output (MIMO) system. A pulse width modulation (PWM) strategy for controlling simultaneous power flow in the MIMO converter is also proposed. The proposed PWM scheme works in the discontinuous conduction mode. The leakage inductance can be chosen to aid power transfer. By using the proposed converter topology and PWM scheme, the need to compute power flow equations to determine the magnitude and direction of power flow between ports is alleviated. Instead, a simple controller structure based on average current control can be used to control the power flow. This study discusses the operating phases of the proposed multi-port converter along with its PWM scheme, the design process for each of the ports and finally experimental waveforms that validate the multi-port scheme.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.
Resumo:
Free vibration problem of a rotating Euler-Bernoulli beam is solved with a truly meshless local Petrov-Galerkin method. Radial basis function and summation of two radial basis functions are used for interpolation. Radial basis function satisfies the Kronecker delta property and makes it simpler to apply the essential boundary conditions. Interpolation with summation of two radial basis functions increases the node carrying capacity within the sub-domain of the trial function and higher natural frequencies can be computed by selecting the complete domain as a sub-domain of the trial function. The mass and stiffness matrices are derived and numerical results for frequencies are obtained for a fixed-free beam and hinged-free beam simulating hingeless and articulated helicopter blades. Stiffness and mass distribution suitable for wind turbine blades are also considered. Results show an accurate match with existing literature.
Resumo:
This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.
Resumo:
In brittle composites, such as whisker reinforced ceramics, the sliding of reinforcing fibers against the frictional resistance of matrix is of a pseudo-plastic deformation mechanism. High aspect-ratio whiskers possess larger pseudo-plastic deformation ability but are usually sparse, while, low aspect-ratio ones were distributed widely in the matrix and show low pseudo-plastic deformation ability (engagement effect), also. A comparative investigation was carried out in present study based on a multi-scale network model. The results indicate that the effect of low aspect-ratio whiskers is of most importance. Improving the engagement coefficient by raising the compactness of material seems a more practical way for optimization of discontinuous fiber-reinforced brittle composites in the present technological condition.
Resumo:
利用低维Galerkin方法及Floquet稳定性分析理论,计算分析了圆柱绕流的三维线性不稳定性.分析中构造了能较好描述尾迹区流动的周向基函数,建立了完备的合理的基函数组,改进了计算机算法.结果证实圆柱二维周期流对展向小扰动为不稳定的,正确地预计了出现三维长波不稳定性的临界雷诺数Re_c=190,扰动展向波长为λ_c=3.6d.对雷诺数Re为180,190两种工况下的圆柱三维绕流流场的计算进一步证实了这种流动的整体不稳定性.该文所预计的临界值比Noack等人的结果更为精确,与Barkley等人的DNS解一致,与Williamson的实验相符.