969 resultados para Discharge (fluid mechanics)
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
In natural waterways and estuaries, the understanding of turbulent mixing is critical to the knowledge of sediment transport, stormwater runoff during flood events, and release of nutrient-rich wastewater into ecosystems. In the present study, some field measurements were conducted in a small subtropical estuary with micro-tidal range and semi-diurnal tides during king tide conditions: i. e., the tidal range was the largest for both 2009 and 2010. The turbulent velocity measurements were performed continuously at high-frequency (50Hz) for 60 h. Two acoustic Doppler velocimeters (ADVs) were sampled simultaneously in the middle estuarine zone, and a third ADV was deployed in the upper estuary for 12 h only. The results provided an unique characterisation of the turbulence in both middle and upper estuarine zones under the king tide conditions. The present observations showed some marked differences between king tide and neap tide conditions. During the king tide conditions, the tidal forcing was the dominant water exchange and circulation mechanism in the estuary. In contrast, the long-term oscillations linked with internal and external resonance played a major role in the turbulent mixing during neap tides. The data set showed further that the upper estuarine zone was drastically less affected by the spring tide range: the flow motion remained slow, but the turbulent velocity data were affected by the propagation of a transient front during the very early flood tide motion at the sampling site. © 2012 Springer Science+Business Media B.V.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
The unsteady boundary-layer development for thermomagnetic convection of paramagnetic fluids inside a square cavity has been considered in this study. The cavity is placed in a microgravity condition (no gravitation acceleration) and under a uniform magnetic field which acts vertically. A ramp temperature boundary condition is applied on left vertical side wall of the cavity where the temperature initially increases with time up to some specific time and maintain constant thereafter. A distinct magnetic convection boundary layer is developed adjacent to the left vertical wall due to the effect of the magnetic body force generated on the paramagnetic fluid. An improved scaling analysis has been performed using triple-layer integral method and verified by numerical simulations. The Prandtl number has been chosen greater than unity varied over 5-100. Moreover, the effect of various values of the magnetic parameter and magnetic Rayleigh number on the fluid flow and heat transfer has been shown.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
A wet scrubber is a device used in underground coal mines for the exhaust treatment system of various internal combustion engines (generally diesel) primarily as a spark arrestor with a secondary function to remove pollutants from the exhaust gas. A pool of scrubbing liquid (generally water based) is used in conjunction with a Diesel Particulate Filter (DPF). Scrubbers are widely used in underground applications of diesel engines as their exhaust contains high concentration of harmful diesel particulate matter (DPM) and other pollutant gases. Currently the DPFs have to be replaced frequently because moisture output from the wet scrubber blocks the filter media and causes reduced capacity. This paper presents experimental and theoretical studies on the heat and mass transfer mechanisms of the exhaust flow both under and above the water surface, aiming at finding the cause and effects of the moisture reaching the filters and employing a solution to reduce the humidity and DPM output, and to prolong the change-out period of the DPF. By assuming a steady flow condition, heat transfer from the inlet exhaust gas balances energy required for the water evaporation. Hence the exit humidity will decrease with the increase of exit temperature. Experiments on a real scrubber are underway.
On the effective hydraulic conductivity and macrodispersivity for density-dependent groundwater flow
Resumo:
In this paper, semi-analytical expressions of the effective hydraulic conductivity ( KE) and macrodispersivity ( αE) for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of KE and αE on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal KE and αE are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical KE and αE are found to be reduced slightly when the density factor ( γ ) is less than 0.01, whereas significant decreases occur when γ exceeds 0.01. Of note, the variation of KE and αE is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.
Resumo:
The effects of suspension parameters and driving conditions on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer are investigated in this study. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspensions is formulated based on fluid mechanics and thermodynamics and validated through test results. The effects of road surface conditions, driving speeds, air line inside diameter and connector inside diameter on dynamic load-sharing capability of the semi-trailer were analyzed in terms of load-sharing criteria. Simulation results indicate that, when larger air lines and connectors are employed, the DLSC (Dynamic Load-Sharing Coefficient) optimization ratio reaches its peak value when the road roughness is medium. The optimization ratio fluctuates in a complex manner as driving speed increases. The results also indicate that if the air line inside diameter is always assumed to be larger than the connector inside diameter, the influence of air line inside diameter on load-sharing is more significant than that of the connector inside diameter. The proposed approach can be used for further study of the influence of additional factors (such as vehicle load, static absolute air pressure and static height of air spring) on load-sharing and the control methods for multi-axle air suspensions with longitudinal air line.
Resumo:
Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called "residual order spectrogram", i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.
Resumo:
A, dry, non-hydrostatic sub-cloud model is used to simulate an isolated stationary downburst wind event to study the influence topographic features have on the near-ground wind structure of these storms. It was generally found that storm maximum wind speeds could be increased by up to 30% because of the presence of a topographic feature at the location of maximum wind speeds. Comparing predicted velocity profile amplification with that of a steady flow impinging jet, similar results were found despite the simplifications made in the impinging jet model. Comparison of these amplification profiles with those found in the simulated boundary layer winds reveal reductions of up to 30% in the downburst cases. Downburst and boundary layer amplification profiles were shown to become more similar as the topographic feature height was reduced with respect to the outflow depth.
Resumo:
A physical and numerical steady flow impinging jet has been used to simulate the bulk characteristics of a downburst-like wind field. The influence of downdraft tilt and surface roughness on the ensuing wall jet flow has been investigated. It was found that a simulated downdraft impinging the surface at a non-normal angle has the potential for causing larger structural loads than the normal impingement case. It was also found that for the current impinging jet simulations, surface roughness played a minor role in determining the storm maximum wind structure, but this influence increased as the wall jet diverged. However, through comparison with previous research it was found that the influence of surface roughness is Reynolds number dependent and therefore may differ from that reported herein for full-scale downburst cases. Using the current experimental results an empirical model has been developed for laboratory-scale impinging jet velocity structure that includes the influence of both jet tilt and surface roughness.
Resumo:
The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.
Resumo:
A non-translating, long duration thunderstorm downburst has been simulated experimentally and numerically by modelling a spatially stationary steady flow impinging air jet. Velocity profiles were shown to compare well with an upper-bound of velocity measurements reported for full-scale microbursts. Velocity speed-up over a range of topographic features in simulated downburst flow was also tested with comparisons made to previous work in a similar flow, and also boundary layer wind tunnel experiments. It was found that the amplification measured above the crest of topographic features in simulated downburst flow was up to 35% less than that observed in boundary layer flow for all shapes tested. From the computational standpoint we conclude that the Shear Stress Transport (SST) model performs the best from amongst a range of eddy-viscosity and second moment closures tested for modelling the impinging jet flow.