942 resultados para Direction of motion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that the evidence used to support a decision to move our eyes and the confidence we have in that decision are derived from a common source. Alternatively, confidence may be based on further post-decisional processes. In three experiments we examined this. In Experiment 1, participants chose between two targets on the basis of varying levels of evidence (i.e., the direction of motion coherence in a Random-Dot-Kinematogram). They indicated this choice by making a saccade to one of two targets and then indicated their confidence. Saccade trajectory deviation was taken as a measure of the inhibition of the non-selected target. We found that as evidence increased so did confidence and deviations of saccade trajectory away from the non-selected target. However, a correlational analysis suggested they were not related. In Experiment 2 an option to opt-out of the choice was offered on some trials if choice proved too difficult. In this way we isolated trials on which confidence in target selection was high (i.e., when the option to opt-out was available but not taken). Again saccade trajectory deviations were found not to differ in relation to confidence. In Experiment 3 we directly manipulated confidence, such that participants had high or low task confidence. They showed no differences in saccade trajectory deviations. These results support post-decisional accounts of confidence: evidence supporting the decision to move the eyes is reflected in saccade control, but the confidence that we have in that choice is subject to further post-decisional processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning to talk about motion in a second language is very difficult because it involves restructuring deeply entrenched patterns from the first language (Slobin 1996). In this paper we argue that statistical learning (Saffran et al. 1997) can explain why L2 learners are only partially successful in restructuring their second language grammars. We explore to what extent L2 learners make use of two mechanisms of statistical learning, entrenchment and pre-emption (Boyd and Goldberg 2011) to acquire target-like expressions of motion and retreat from overgeneralisation in this domain. Paying attention to the frequency of existing patterns in the input can help learners to adjust the frequency with which they use path and manner verbs in French but is insufficient to acquire the boundary crossing constraint (Slobin and Hoiting 1994) and learn what not to say. We also look at the role of language proficiency and exposure to French in explaining the findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highest energy cosmic ray event reported by the Auger Observatory has an energy of 148 EeV. It does not correlate with any nearby (z<0.024) object capable of originating such a high energy event. Intrigued by the fact that the highest energy event ever recorded (by the Fly`s Eye collaboration) points to a faraway quasar with very high radio luminosity and large Faraday rotation measurement, we have searched for a similar source for the Auger event. We find that the Auger highest energy event points to a quasar with similar characteristics to the one correlated to the Fly`s Eye event. We also find the same kind of correlation for one of the highest energy AGASA events. We conclude that so far these types of quasars are the best source candidates for both Auger and Fly`s Eye highest energy events. We discuss a few exotic candidates that could reach us from gigaparsec distances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde os descobrimentos pioneiros de Hubel e Wiesel acumulou-se uma vasta literatura descrevendo as respostas neuronais do córtex visual primário (V1) a diferentes estímulos visuais. Estes estímulos consistem principalmente em barras em movimento, pontos ou grades, que são úteis para explorar as respostas dentro do campo receptivo clássico (CRF do inglês classical receptive field) a características básicas dos estímulos visuais como a orientação, direção de movimento, contraste, entre outras. Entretanto, nas últimas duas décadas, tornou-se cada vez mais evidente que a atividade de neurônios em V1 pode ser modulada por estímulos fora do CRF. Desta forma, áreas visuais primárias poderiam estar envolvidas em funções visuais mais complexas como, por exemplo, a separação de um objeto ou figura do seu fundo (segregação figura-fundo) e assume-se que as conexões intrínsecas de longo alcance em V1, assim como as conexões de áreas visuais superiores, estão ativamente envolvidas neste processo. Sua possível função foi inferida a partir da análise das variações das respostas induzidas por um estímulo localizado fora do CRF de neurônios individuais. Mesmo sendo muito provável que estas conexões tenham também um impacto tanto na atividade conjunta de neurônios envolvidos no processamento da figura quanto no potencial de campo, estas questões permanecem pouco estudadas. Visando examinar a modulação do contexto visual nessas atividades, coletamos potenciais de ação e potenciais de campo em paralelo de até 48 eletrodos implantados na área visual primária de gatos anestesiados. Estimulamos com grades compostas e cenas naturais, focando-nos na atividade de neurônios cujo CRF estava situado na figura. Da mesma forma, visando examinar a influência das conexões laterais, o sinal proveniente da área visual isotópica e contralateral foi removido através da desativação reversível por resfriamento. Fizemos isso devido a: i) as conexões laterais intrínsecas não podem ser facilmente manipuladas sem afetar diretamente os sinais que estão sendo medidos, ii) as conexões inter-hemisféricas compartilham as principais características anatômicas com a rede lateral intrínseca e podem ser vistas como uma continuação funcional das mesmas entre os dois hemisférios e iii) o resfriamento desativa as conexões de forma causal e reversível, silenciando temporariamente seu sinal, permitindo conclusões diretas a respeito da sua contribuição. Nossos resultados demonstram que o mecanismo de segmentação figurafundo se reflete nas taxas de disparo de neurônios individuais, assim como na potência do potencial de campo e na relação entre sua fase e os padrões de disparo produzidos pela população. Além disso, as conexões laterais inter-hemisféricas modulam estas variáveis dependendo da estimulação feita fora do CRF. Observamos também uma influência deste circuito lateral na coerência entre potenciais de campo entre eletrodos distantes. Em conclusão, nossos resultados dão suporte à ideia de um mecanismo complexo de segmentação figura-fundo atuando desde as áreas visuais primárias em diferentes escalas de frequência. Esse mecanismo parece envolver grupos de neurônios ativos sincronicamente e dependentes da fase do potencial de campo. Nossos resultados também são compatíveis com a hipótese que conexões laterais de longo alcance também fazem parte deste mecanismo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the torsion constraints and show the consistency of equations of motion of four-dimensional Type II supergravity in superspace. with Type II sigma model. This is achieved by coupling the four-dimensional compactified Type II Berkovits' superstring to an N = 2 curved background and requiring that the sigma-model has superconformal invariance at tree-level. We compute this in a manifestly 4D N = 2 supersymmetric way. The constraints break the target conformal and SU(2) invariances and the dilaton will be a conformal, SU(2) x U(1) compensator. For Type II superstring in four dimensions, worldsheet supersymmetry requires two different compensators. One type is described by chiral and anti-chiral superfields. This compensator can be identified with a vector multiplet. The other Type II compensator is described by twist-chiral and twist-anti-chiral superfields and can be identified with a tensor hypermultiplet. Also, the superconformal invariance at tree-level selects a particular gauge, where the matter is fixed, but not the compensators. After imposing the reality conditions, we show that the Type II sigma model at tree-level is consistent with the equations of motion for Type II supergravity in the string gauge. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The iterative quadratic maximum likelihood IQML and the method of direction estimation MODE are well known high resolution direction-of-arrival DOA estimation methods. Their solutions lead to an optimization problem with constraints. The usual linear constraint presents a poor performance for certain DOA values. This work proposes a new linear constraint applicable to both DOA methods and compare their performance with two others: unit norm and usual linear constraint. It is shown that the proposed alternative performs better than others constraints. The resulting computational complexity is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. Isokinetic tests are often applied to assess muscular strength and EMG activity, however the specific ranges of motion used in testing (fully flexed or extended positions) might be constrictive and/or be painful for patients with injuries or under-going rehabilitation. The aim of this study was to examine the effects of different ranges of motion (RoM) when determining maximal EMG during isokinetic knee flexion and extension with different types of contractions and velocities. Methods. Eighteen males had EMG activity recorded on the vastus lateralis, vastus medialis, semitendinosus and biceps femoris muscles during five maximal isokinetic concentric and eccentric contractions for the knee flexors and extensors at 60° • s -1 and 180° • s -1. The root mean square of EMG was calculated at three different ranges of motion: (1) a full range of motion (90°-20° [0° = full knee extension]); (2) a range of motion of 20° (between 60°-80° and 40°-60° for knee extension and flexion, respectively) and (3) at a 10° interval around the angle where peak torque is produced. EMG measurements were statistically analyzed (ANOVA) to test for the range of motion, contraction velocity and contraction speed effects. Coefficients of variation and Pearson's correlation coefficients were also calculated among the ranges of motion. Results. Predominantly similar (p > 0.05) and well-correlated EMG results (r > 0.7, p ≤ 0.001) were found among the ranges of motion. However, a lower coefficient of variation was found for the full range of motion, while the 10° interval around peak torque at 180° • s -1 had the highest coefficient, regardless of the type of contraction. Conclusions. Shorter ranges of motion at around the peak torque angle provides a reliable indicator when recording EMG activity during maximal isokinetic parameters. It may provide a safer alternative when testing patients with injuries or undergoing rehabilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.