992 resultados para Direct manipulation interfaces
Resumo:
A method is presented for the direct extraction of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R-3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (
Resumo:
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted.We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mM, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe(6), and the second involving a charge-charge interaction with the Asp(25) residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.
Resumo:
Variation in larval size has been shown to be an important factor for the post-metamorphic performance of marine invertebrates but, despite its importance, few sources of this variation have been identified. For a range of taxa, offspring size is positively correlated with maternal size but the reasons for this correlation remain unclear. We halved the size of colonies in the bryozoan Bugula neritina 1 wk prior to reproduction (but during embryogenesis) to determine if larval size is a fixed or plastic trait. We manipulated colonies in such a way that the ratio of feeding zooids to reproductive zooids was constant between treatment and control colonies. We found that manipulating colony size strongly affects larval size; halved colonies produced larvae that were similar to13% smaller than those produced by intact colonies. We entered these data into a simple model based on previous work to estimate the likely post-metamorphic consequences of this reduction in larval size. The model predicted that larvae that came from manipulated colonies would suffer similar to300% higher post-metamorphic mortality and similar to50% lower fecundity as adults. Colonies that are faced with a stress appear to be trading off current offspring fitness to maximize their own long-term fitness and this may explain previous observations of compensatory growth in colonial organisms. This study demonstrates that larval size is a surprisingly dynamic trait and strong links exist between the maternal phenotype and the fitness of the offspring. The performance of settling larvae may be determined not only by their larval experience but also by the experience of their mothers.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Bovine testicular hyalurphidase (BT-HAase), a tetrameric enzyme responsible for randomly hyaluronic acid, catalytic hydrolysis, was successfully immobilized on Langmuir- Blodgett films prepared with the sodium salt of dihexadacylphosphoric acid, (DHP-Zn(II)) ending with dipalmitoylphosphatidylcholine, DPPC. Data of protein, adsorption at the air-liquid interface by means of pendant drop shipe analysis and interaction of the protein with Langmuir monolayers of DPPC, using a Langmuir trough, have provided information. about the conditions to be used in the protein immobilization. The dynamic surface pressure curves obtained from pendant drop experiments for the enzyme in buffer solutions indicate that, within the range of concentration investigated in this study, the enzyme exhibits the largest induction time at 5 mu g L(-1) attributed to diffusion processes. Nevertheless, it seems that, at this concentration, the most probable conformation should be the one which occupies the smallest area at pi -> 0. The surface pressure (pi) area curves obtained for BT-HAase and mixed DPPC- BT-HAase monolayers reveal the presence of the enzyme at the air-lipid interface up to 45 mN m(-1). Tests of enzymatic activity, using hyaluronic acid, HA, as the substrate, showed an increase of activity compared to the homogeneous medium. A simplified model of protein insertion into the lipid matrix is used to explain the obtained results.
Resumo:
The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.
Resumo:
Studies of ant-plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.
Resumo:
Direct carotid-cavernous fistula (CCF) is a direct communication between the internal carotid artery (ICA) and the cavernous sinus. Some patients treated with detachable balloons develop pseudoaneurysms or present with a true aneurysm recanalization in the cavernous ICA with poorly known long-term radiological and clinical progression. The objective of the present study was to evaluate the long-term clinical and radiological progression of patients treated with detachable balloons. The present study evaluated 13 patients previously treated for direct CCF by an endovascular approach. The follow-up period ranged between 19 and 128 months. Ophthalmological evaluation demonstrated alterations in eight patients (61.5%). All of these alterations were already present from the moment of the treatment and displayed no signs of progression. Cranial magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) were performed in all patients, and 11 pseudoaneurysms were demonstrated in ten of the 11 patients in whom ICA patency had been preserved. Five patients were submitted for cerebral digital subtraction angiography (DSA) to characterize the pseudoaneurysms previously observed on MRA studies, with no significant differences in morphology, size, aneurismal neck, and number of lesions. Endovascular treatment of direct CCF with detachable balloons has been shown to be a long-term effective and stable therapeutic method. The authors found asymptomatic pseudoaneurysms in 91% of cases where the ICA patency was preserved. MRI and MRA demonstrated an accuracy similar to that of DSA in the diagnosis of pseudoaneurysms of cavernous ICA.
Resumo:
To date very Few families of critical sets for latin squares are known. The only previously known method for constructing critical sets involves taking a critical set which is known to satisfy certain strong initial conditions and using a doubling construction. This construction can be applied to the known critical sets in back circulant latin squares of even order. However, the doubling construction cannot be applied to critical sets in back circulant latin squares of odd order. In this paper a family of critical sets is identified for latin squares which are the product of the latin square of order 2 with a back circulant latin square of odd order. The proof that each element of the critical set is an essential part of the reconstruction process relies on the proof of the existence of a large number of latin interchanges.