988 resultados para Dioxide Reaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zr-Laponite pillared clays were prepared and used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of supports and catalysts were systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron spectroscopy (TEM) techniques. The catalytic performance and carbon deposition were investigated. It is found that Zr-Laponite pillared clays are promising catalyst supports for carbon dioxide reforming of methane. The pore structure and surface properties of such supports greatly affect the catalytic behaviors of catalysts derived. Carbon deposition on catalysts was also affected by the property and structure of supports. The sintering of nickel metal and zirconia was another factor responsible for catalyst deactivation. This new-type nickel supported catalyst Ni/Zr-Laponite(8), with well-developed porosity, gave a higher initial conversion and a relatively long-term stability, and is therefore a promising catalyst for potential application to carbon dioxide reforming of methane to synthesis gas. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The studies described in this thesis are concerned with the reaction of carbon dioxide and transition metal complexes of Co, Ir, Rh, Ru. Due to the important role of group VIII transition metals in homogeneous catalytic reactions, the work is mainly concerned with complexes of ruthenium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five samples including a composite refuse derived fuel (RDF) and four combustible components of municipal solid wastes (MSW) have been reacted under supercritical water conditions in a batch reactor. The reactions have been carried out at 450 °C for 60 min reaction time, with or without 20 wt% RuO2/gamma-alumina catalyst. The reactivities of the samples depended on their compositions; with the plastic-rich samples, RDF and mixed waste plastics (MWP), giving similar product yields and compositions, while the biogenic samples including mixed waste wood (MWW) and textile waste (TXT) also gave similar reaction products. The use of the heterogeneous ruthenium-based catalyst gave carbon gasification efficiencies (CGE) of up to 99 wt%, which was up by at least 83% compared to the non-catalytic tests. In the presence of RuO2 catalyst, methane, hydrogen and carbon dioxide became the dominant gas products for all five samples. The higher heating values (HHV) of the gas products increased at least two-fold in the presence of the catalyst compared to non-catalytic tests. Results show that the ruthenium-based catalyst was active in feedstock steam reforming, methanation and possible direct hydrogenolysis of C-C bonds. This work provides new insights into the catalytic mechanisms of RuO2 during SCWG of carbonaceous materials, along with the possibility of producing high yields of methane from MSW fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO$\sb2$ catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO$\sb2$ dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir-Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO$\sb2$ through both hydroxyl and fluoride groups to form a chelated type structure. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. The target molecules are classified as 1-aryl 2-cyclopropyl substituted ethylene. In the ground state, these molecules have a number of conformers, which are in equilibrium through rotation about single bonds. Once excited, the conformers have fixed conformation and are no longer in equilibrium and can be distinguished by their UV-vis as well as fluorescence spectra. The synthetic strategy involves standard steps. Both 2-methylanthracene and 2-methylnaphthalene were brominated using N-bromosuccinimide to give the bromomethyl adduct, which then was reacted with triphenylphosphine to form the phosphonium salt. This was followed by the formation of the phosphorus ylide, which upon treatment with cyclopropanecarboxaldehyde gave the product.^ II. The degradation of three aliphatic haloethers: bis-(2-chloroethyl) ether, bis-(2-chloroisopropyl) ether, and bis-(2-chloroethoxy)methane and two aromatic haloethers: 4-chlorodiphenyl ether and 4-bromodiphenyl ether was studied. Product studies have been conducted on the titanium dioxide photocatalysis of these compounds including mass balance, monitoring and identifying intermediates to establish the reaction pathways to deduce a mechanism for their degradation. The extent of mineralization was determined from the measurement of halogen anion (Cl$\sp-$/Br$\sp-$) as well as total organic carbon. The relative rates of disappearance of the individual haloethers appear to be related to the hydrophobic character of the given compound. Reaction mechanisms involving hydroxyl radical are proposed to explain the observed results. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO2 catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO2 dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir- Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO2 through both hydroxyl and fluoride groups to form a chelated type structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photochemistry of the polar regions of Earth, as well as the interstellar medium, is driven by the effect of ultraviolet radiation on ice surfaces and on the materials trapped within them. While the area of ice photochemistry is vast and much research has been completed, it has only recently been possible to study the dynamics of these processes on a microscopic level. One of the leading techniques for studying photoreaction dynamics is Velocity Map Imaging (VMI). This technique has been used extensively to study several types of reaction dynamics processes. Although the majority of these studies have utilized molecular beams as the main medium for reactants, new studies showed the versatility of the technique when applied to molecular dynamics of molecules adsorbed on metal surfaces. Herein the development of a velocity map imaging apparatus capable of studying the photochemistry of condensed phase materials is described. The apparatus is used to study of the photo-reactivity of NO2 condensed within argon matrices to illustrate its capabilities. A doped ice surface is formed by condensing Ar and NO2 gas onto a sapphire rod which is cooled using a helium compressor to 20 K. The matrix is irradiated using an Nd:YAG laser at 355 nm, and the resulting NO fragment is state-selectively ionized using an excimer-pumped dye laser. In all, we are able to detect transient photochemically generated species and can collect information on their quantum state and kinetic energy distribution. It is found that the REMPI spectra changes as different sections of the dissociating cloud are probed. The rotational and translational energy populations are found to be bimodal with a low temperature component roughly at the temperature of the matrix, and a second component with much higher temperature, the rotational temperature showing a possible population inversion, and the translational temperature of 100-200 K. The low temperature translational component is found to dominate at long delay times between dissociation and ionization, while at short time delays the high temperature component plays a larger role. The velocity map imaging technique allows for the detection of both the axial and radial components of the translational energy. The distribution of excess energy over the rotational, electronic and translational states of the NO photofragments provides evidence for collisional quenching of the fragments in the Ar-matrix prior to their desorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium (Mg) battery is considered as a promising candidate for the next generation battery technology that could potentially replace the current lithium (Li)-ion batteries due to the following factors. Magnesium possesses a higher volumetric capacity than commercialized Li-ion battery anode materials. Additionally, the low cost and high abundance of Mg compared to Li makes Mg batteries even more attractive. Moreover, unlike metallic Li anodes which have a tendency to develop a dendritic structure on the surface upon the cycling of the battery, Mg metal is known to be free from such a hazardous phenomenon. Due to these merits of Mg as an anode, the topic of rechargea¬ble Mg batteries has attracted considerable attention among researchers in the last few decades. However, the aforementioned advantages of Mg batteries have not been fully utilized due to the serious kinetic limitation of Mg2+ diffusion process in many hosting compounds which is believed to be due to a strong electrostatic interaction between divalent Mg2+ ions and hosting matrix. This serious kinetic hindrance is directly related to the lack of cathode materials for Mg battery that provide comparable electrochemical performances to that of Li-based system. Manganese oxide (MnO2) is one of the most well studied electrode materials due to its excellent electrochemical properties, including high Li+ ion capacity and relatively high operating voltage (i.e., ~ 4 V vs. Li/Li+ for LiMn2O4 and ~ 3.2 V vs. Mg/Mg2+). However, unlike the good electrochemical properties of MnO2 realized in Li-based systems, rather poor electrochemical performances have been reported in Mg based systems, particularly with low capacity and poor cycling performances. While the origin of the observed poor performances is believed to be due to the aforementioned strong ionic interaction between the Mg2+ ions and MnO2 lattice resulting in a limited diffusion of Mg2+ ions in MnO2, very little has been explored regarding the charge storage mechanism of MnO2 with divalent Mg2+ ions. This dissertation investigates the charge storage mechanism of MnO2, focusing on the insertion behaviors of divalent Mg2+ ions and exploring the origins of the limited Mg2+ insertion behavior in MnO2. It is found that the limited Mg2+ capacity in MnO2 can be significantly improved by introducing water molecules in the Mg electrolyte system, where the water molecules effectively mitigated the kinetic hindrance of Mg2+ insertion process. The combination of nanostructured MnO2 electrode and water effect provides a synergic effect demonstrating further enhanced Mg2+ insertion capability. Furthermore, it is demonstrated in this study that pre-cycling MnO2 electrodes in water-containing electrolyte activates MnO2 electrode, after which improved Mg2+ capacity is maintained in dry Mg electrolyte. Based on a series of XPS analysis, a conversion mechanism is proposed where magnesiated MnO2 undergoes a conversion reaction to Mg(OH)2 and MnOx and Mn(OH)y species in the presence of water molecules. This conversion process is believed to be the driving force that generates the improved Mg2+ capacity in MnO2 along with the water molecule’s charge screening effect. Finally, it is discussed that upon a consecutive cycling of MnO2 in the water-containing Mg electrolyte, structural water is generated within the MnO2 lattice, which is thought to be the origin of the observed activation phenomenon. The results provided in this dissertation highlight that the divalency of Mg2+ ions result in very different electrochemical behaviors than those of the well-studied monovalent Li+ ions towards MnO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide nanocrystals are an important commercial product used primarily in white pigments and abrasives, however, more recently the anatase form of TiO2 has become a major component in electrochemical and photoelectrochemical devices. An important property of titanium dioxide nanocrystals for electrical applications is the degree of crystallinity. Numerous preparation methods exist for the production of highly crystalline TiO2 particles. The majority of these processes require long reaction times, high pressures and temperatures (450–1400 °C). Recently, hydrothermal treatment of colloidal TiO2 suspensions has been shown to produce quality crystalline products at low temperatures (<250 °C). In this paper we extend this idea utilising a direct microwave heating source. A comparison between convection and microwave hydrothermal treatment of colloidal TiO2 is presented. The resulting highly crystalline TiO2 colloids were characterised using Raman spectroscopy, XRD, TEM, and electron diffraction. The results show that the microwave treatment of colloidal TiO2 gives comparable increases in crystallinity with respect to normal hydrothermal treatments while requiring significantly less time and energy than the hydrothermal convection treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the decision by Australian Real Estate Trusts (A-REITs) to issue seasoned equity offerings from 2000 - 2008 and stock market reaction to the offerings using panel data and event study methodologies, respectively. The global financial crisis has resulted in freezing of the Australian bond markets, with several A-REITs left with seasoned equity issuance and asset sales as the only viable modes of raising additional capital. The findings review that leverage and operating risk are negative significant determinants of seasoned equity offerings; profitability and growth opportunities are positive significant determinants. Of the structure and type of properties held by the A-REIT, only stapled management structure and international operations are significant determinants. Type of properties held by A-REITs show inconsistent results. Similar to previous studies of seasoned equity offerings, we find a significant negative abnormal return associated with their announcement and no evidence of excessive leakage of information. Cross-sectional regressions show that the issued amount raised and leverage are significant factors affecting abnormal returns.