925 resultados para Dilute Aqueous-solution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bound in: A reprint of an article, by Merle Randall and Charles C. Scalione, published in the Journal of the American chemical society, 49, 1927, with a special thesis t.-p. attached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation of the secondary nucleation threshold (SNT) of alpha-glucose monohydrate was conducted in aqueous solutions in agitated batch systems for the temperature range 10 to 40 degrees C. The width of the SNT decreased as the induction time increased and was found to be temperature independent when supersaturation was based on the absolute concentration driving force. Nonnucleating seeded batch bulk crystallizations of this sugar were performed isothermally in the same temperature range as the SNT experiments, and within the SNT region to avoid nucleation. The growth kinetics were found to be linearly dependent on the supersaturation of total glucose in the system when the mutarotation reaction is not rate limiting. The growth rate constant increases with increasing temperature and follows an Arrhenius relationship with an activation energy of 50 +/- 2 kJ/mol. alpha-Glucose monohydrate shows significant crystal growth rate dispersion (GRD). For the seeds used, the 95% range of growth rates was within a factor of 6 for seeds with a narrow particle size distribution, and 8 for seeds with a wider distribution that was used at 25 degrees C. The results will be used to model the significance of the mutarotation reaction on the overall crystallization rate of D-glucose in industrial crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 121 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seriously aggregated LDH agglomerates can be dispersed by a hydrothermal treatment into homogeneous stable suspensions that contain LDH particles in the range of 50−300 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of adding bromoform (CHBr3) as a potential chain transfer agent in the photopolymerisation of acrylamide (AM) in aqueous solution have been studied both in terms of influencing the rate of polymerisation and the molecular weight of the polyacrylamide (PAM) formed. Using 4,4′-azo-bis(4-cyanopentanoic acid) (ACPA) as photoinitiator, two different CHBr3 concentrations as chain transfer agent were compared: 0.5 and 2.0 mol % (relative to AM), the higher of which was determined by the limit of CHBr3 water solubility. The results showed that CHBr3 was an effective chain transfer agent that could regulate the molecular weight of the PAM formed without seriously affecting the polymerisation rate. It is concluded that chain transfer to CHBr3occurs by both Br and H atom transfer although Br transfer is the more favoured due to the weaker C-Br bond. Furthermore, Br transfer leads to Br-terminated chains in which the terminal C-Br bond can re-dissociate leading to re-initiation and re-propagation of the same chain, thereby maintaining the polymerisation rate. Continuing studies into how this mechanism can be exploited in order to synthesize water-soluble block copolymers of potential biomedical importance are currently in progress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10-6 mol dm-3. The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10-4 and 2.5 × 10-3 mol dm-3, respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of swamp arum ( Lasimorpha senegalensis ) seeds as a low-cost adsorbent for the removal of Hg (II) ions from aqueous solution was investigated in this study. The influence of initial metal concentration on the percent adsorption of Hg (II) ions onto powdered swamp arum seeds was studied in a batch system and the filtrate was analyzed using Atomic Absorption Spectrometry (AAS). The percent adsorbed for 10, 20, 40, 60 and 80 mg/L of the aqueous solution were 97.7, 98.9, 99.3, 99.7, and 96.5% respectively. Three isotherms; Langmuir, Freundlich, and BET were used to model the equilibrium sorption of Hg (II) ions onto powdered swamp arum seeds, with a correlation coefficient of 0.998, 0.784 and0.842 respectively. The Langmuir model fitted the equilibrium data best, with a correlation coefficient of 0.998 and a maximum adsorption capacity qm, of 5.917 mg/g. Thus, indicating monolayer coverage on the adsorbent. The results showed that swamp arum seed have the potential to be applied as alternative lowcost biosorbent in the remediation of heavy metal contamination in waste water.