965 resultados para Diesel oil
Resumo:
We describe production of methyl and ethyl esters derived from baru oil (Dipteryx alata Vog.). Water and alcohols are removed from the biodiesel obtained by simple distillation. We study the acidity, density, iodine number, viscosity, water content, peroxide number, external appearance, and saponification number of the oil, its methyl and ethyl esters (biodiesels) and their blends (B5, B10, B15, B20, and B30) with commercial diesel fuel.
Resumo:
"This publication supersedes TM 5-3895-333-25P dated 18 February 1969 and all changes"--P. i.
Resumo:
This paper studies the characteristics of blends of biodiesel and a new type of SSPO (sewage sludge derived intermediate pyrolysis oil) in various ratios, and evaluates the application of such blends in an unmodified Lister diesel engine. The engine performance and exhaust emissions were investigated and compared to those of diesel and biodiesel. The engine injectors were inspected and tested after the experiment. The SSPO-biodiesel blends were found to have comparable heating values to biodiesel, but relatively high acidity and carbon residue. The diesel engine has operated with a 30/70 SSPO-biodiesel blend and a 50/50 blend for up to 10h and there was no apparent deterioration in operation observed. It is concluded that with 30% SSPO, the engine gives better overall performance and fuel consumption than with 50% SSPO. The exhaust temperatures of 30% SSPO and 50% SSPO are similar, but 30% SSPO gives relatively lower NO emission than 50% SSPO. The CO and smoke emissions are lower with 50% SSPO than with 30% SSPO. The injectors of the engine operated with SSPO blends were found to have heavy carbon deposition and noticeably reduced opening pressure, which may lead to deteriorated engine performance and exhaust emissions in extended operation. © 2013 Elsevier Ltd.
Resumo:
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.
Design and construction of fixed bed pyrolysis system and plum seed pyrolysis for bio-oil production
Resumo:
This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.
Resumo:
This study investigated the potential use of sugarcane bagasse as a feedstock for oil production through microbial cultivation. Bagasse was subjected to dilute acid pretreatment with 0.4 wt% H2SO4 (in liquid) at a solid/liquid ratio of 1:6 (wt/wt) at 170 °C for 15 min, followed by enzymatic hydrolysis of solid residue. The liquid fractions of the pretreatment process and the enzymatic hydrolysis process were detoxified and used as liquid hydrolysate (SCBLH) and enzymatic hydrolysate (SCBEH) for the microbial oil production by oleaginous yeast (Rhodotorula mucilaginosa) and filamentous fungi (Aspergillus oryzae and Mucor plumbeus). The results showed that all strains were able to grow and produce oil from bagasse hydrolysates. The highest oil concentrations produced from bagasse hydrolysates were by M. plumbeus at 1.59 g/L (SCBLH) and 4.74 g/L (SCBEH). The microbial oils obtained have similar fatty acid compositions to vegetable oils, indicating that the oil can be used for the production of second generation biodiesel. On the basis of oil yields obtained by M. plumbeus, from 10 million t (wet weight) of bagasse generated annually from sugar mills in Australia, it is estimated that the total biodiesel that could be produced would be equivalent to about 9% of Queensland’s diesel consumption.
Resumo:
This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.
Resumo:
This paper presents the work on detailed characterization of effervescent spray of Jatropha and Pongamia pure plant oils. The spray characteristics of these biofuels are compared with those of diesel. Both macroscopic and microscopic spray characteristics at different injection pressures and gas-to-liquid ratio (GLR) have been studied. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. Due to their higher viscosity, pure plant oils showed poor atomization compared to diesel and a blend of diesel and pure plant oil at a given GLR. Pure plant oil sprays showed a lower spray cone angle when compared to diesel and blends at lower GLRs. However, the difference is not significant at higher GLRs. Droplet size measurements at 100 mm downstream of the exit orifice showed reduction in Sauter mean diameter (SMD) diameter with increase in GLR. A radial variation in the SMD is observed for the blend and pure plant oils. Pure oils showed a larger variation when compared to the blend. Spray unsteadiness has been characterized based on the image-to-image variation in the mean droplet diameter and fluctuations in the spray cone angle. Results showed that pure plant oil sprays are more unsteady at lower GLRs when compared to diesel and blend. A critical GLR is identified at which the spray becomes steady. The three regimes of spray operation, namely ``steady spray,'' ``pulsating spray,'' and ``spray and unbroken liquid jet'' are identified in the injection pressure-GLR parameter space for these pure plant oils. Two-phase flow imaging inside the exit orifice shows that for the pure plant oils, the flow is highly transient at low GLRs and the bubbly, slug, and annular two-phase flow regimes are all observed. However, at higher GLRs where the spray is steady, only the annular flow regime is observed.
Resumo:
Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.
Resumo:
The present study focuses on exploring air-assisted atomization strategies for effective atomization of high-viscosity biofuels, such as pure plant oils (PPOs). The first part of the study concerns application of a novel air-assisted impinging jet atomization for continuous spray applications, and the second part concerns transient spray applications. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. In the first part, effective atomization of Jatropha PPO is demonstrated at gas-to-liquid ratios (GLRs) on the order 0.1. The effect of liquid and gas flow rates on the spray characteristics is evaluated, and results indicate a Sauter mean diameter (SMD) of 50 mu m is achieved with GLRs as low as 0.05. In the second part of the study, a commercially available air-assisted transient atomizer is evaluated using Jatropha PPO. The effect of the pressure difference across the air injector and ambient gas pressure on liquid spray characteristics is studied. The results indicate that it is possible to achieve the same level of atomization of Jatropha as diesel fuel by operating the atomizer at a higher pressure difference. Specifically, a SMD of 44 mu m is obtained for the Jatropha oil using injection pressures of <1 MPa. A further interesting observation associated with this injector is the near constancy of a nondimensional spray penetration rate for the Jatropha oil spray.
Resumo:
This article is the result of experimental studies of the rheologv, viscosities, surface tensions, and atomization of water-methanol and diesel emulsions. The Span 80 and Tween 60 are employed to make three emulsifying agents, Y01, Y02, and Y03, with viscosity of 1.32-1.5 Pa s and HLB values of 5.36, 4.83, and 4.51, respectively. In the water-in-oil emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8-8.0%. The viscosity of the emulsions is 0.003-0.02 Pa s, and the surface tens ion is 0.04-0.1 N/m. The types and concentrations of agents significantly influence the viscosity of the emulsions, and the higher concentration of the aqueous phase (<50%) in creases the viscosities of the emulsions, especially for higher agent concentration. Interfacial membrane and HLB values of the agents can explain all these phenomena. Higher aqueous phase concentration and agent viscosity results in larger Sauter mean diameter.
Resumo:
Os Processos Oxidativos Avançados (POA) surgem como uma tecnologia eficiente para a remediação de áreas contaminadas com óleos, permitindo em muitos casos a completa degradação de uma grande variedade de compostos orgânicos recalcitrantes. Dentre os POA, o reagente de Fenton se destaca por sua simplicidade operacional e tecnologia eficiente para grande carga orgânica, assim como, envolve tempo e custo de processos reduzidos. A literatura reporta uma variedade de trabalhos envolvendo remediação de solos arenosos por POA. Estes resultados não devem ser aplicados diretamente para remediar solos brasileiros devido à variedade dos tipos de petróleo e à grande extensão do território brasileiro rico em diferentes tipos de solos predominantemente argilosos. Dessa forma, é de extrema importância o profundo conhecimento de avaliação e indicação de uma forma de se remediar o solo com condições menos agressivas evitando assim a sua desertificação. Dessa forma, este trabalho tem como objetivo avaliar a eficiência do teor e da forma do ferro endógeno na remediação do tipo Fenton em diferentes amostras de solos brasileiros contaminados com óleo diesel. Dez diferentes tipos de solos brasileiros: argissolo (Arg), chernossolo (Che), latossolo vermelho (LV), latossolo amarelo (LA), latossolo vermelho e amarelo (LVA), latossolo férrico (LE), neossolo (NeQ), organossolo (Org), solonchak (Soc), vertissolo (Ver). Os teores das diferentes formas de ferro endógenos (amorfo, cristalino, biodisponível e total) foram determinados pela extração por ditionito-citrato-bicarbonato de sódio (Fe-CDB), extração com oxalato ácido de amônio (Fe-oxalato), extração com ácido sulfúrico (Fe2O3-AS) e extração com solução de ácido dietileno triamino pentacético (Fe-DTPA), respectivamente. A avaliação da eficiência de oxidação pela dosagem de H2O2 e a forma de ferro disponível, assim como a sua quantidade, foi avaliada segundo correlação de Pearson. Verificou-se que a maioria dos solos argilosos tropicais (LV, LE, LA), mesmo apresentando uma grande quantidade de óxido de ferro cristalino (Fe-DCB) comparados aos solos tipo arenosos (NeQ, Org, Soc), apresentaram resultados de remediação semelhantes aos solos arenosos. Além disso, não foi observada uma correlação linear entre a quantidade de óxido de ferro cristalino e a eficiência da remediação, porém sugere-se que a elevada quantidade de óxido de ferro cristalino (Fe-DCB) adsorva os íons ferro da solução. O LVA foi o solo que apresentou a maior eficiência de remediação, independente da adição ou não de ferro. Este resultado foi atribuído à sua maior quantidade de ferro amorfo (Fe-oxalato). A tentativa de se correlacionar a remediação com algumas propriedades dos solos demonstrou que a correlação com pH, sem considerar o solonchack (Soc) é a que apresenta maior significância, ou seja, é o pH do solo que parece influenciar o grau de diferenciação das remediações com ou sem adição de ferro. Em solos mais arenosos, a eficiência da remediação com a adição de ferro exógeno foi mais significativa do que a observada para os solos argilosos.