996 resultados para Dielectric Barrier discharge reactor
Resumo:
A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.
Resumo:
Vegetable-based polyurethane (PU) was prepared in the thin film form by spin coating. This polymer is synthesised from castor oil, which can be extracted from the seeds of a native plant in Brazil called mamona. This polymer is biocompatible and is being used as material for artificial bone. The PU was characterised by dielectric spectroscopy in a wide range of frequency (10(-5) Hz to 10(5) Hz) and by thermally stimulated discharge current (TSDC) measurements. The glass transition temperature (T-g=39degreesC) was determined and using the initial rise method the activation energy was found to be 1.58 eV. (C) 2003 Kluwer Academic Publishers.
Resumo:
The nonohmic electrical features of (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca-1/4,Cu-3/4)TiO3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dielectric spectroscopy was used in this study to examine CaCu3Ti4O12 polycrystalline samples. The analysis involved systems presenting low non-Ohmic properties, and the grain's internal domain was evaluated separately from the contribution of barrier-layer capacitances associated with Schottky-type barriers in this type of material. The effect of oxygen-rich atmosphere and high cooling rate was evaluated, revealing a strong increase in the dielectric properties of the CaCu3Ti4O12 system under these conditions. This effect was attributed to a chemical change in the grain's internal domain, which may be considered an internal barrier-layer capacitance of the polycrystalline material. (c) 2006 American Institute of Physics.
Resumo:
This text discusses about advantageous, powerful and limitations of admittance and dielectric spectroscopy in the characterization of polycrystalline semiconductors. In the context of polycrystalline semiconductors or dielectric materials, the admittance or dielectric frequency response analyses are shown to be sometimes more useful than impedance spectra analysis, mainly because information on the capacitances or deep trap states are possible to be monitored from admittance or dielectric spectra as a function of dopant concentration or annealing effects. The majority of examples of the application of admittance or dielectric analysis approach were here based on SnO2- and ZnO-based polycrystalline semiconductors devices presenting nonohmic properties. Examples of how to perform the characterization of Schottky barrier in such devices are clearly depicted. The approach is based on findings of the true Mott-Schottky pattern of the barrier by extracting the grain boundary capacitance value from complex capacitance diagram analysis. The equivalent circuit of such kind of devices is mainly consistent with the existence of three parallel elements: the high-frequency limit related to grain boundary capacitances, the complex incremental capacitance at intermediate frequency related to the deep trap relaxation and finally at low frequency region the manifestation of the conductance term representing the dc conductance of the multi-junction device. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
The complex analysis of dielectric/capacitance is a very useful approach to separate different polarization contributions existing in polycrystalline ceramics. In this letter, the authors use this type of spectroscopic analysis to separate the bulk's dielectric dipolar relaxation contributions from the polarization contribution due to space charge in the grain boundaries of a CaCu3Ti4O12/CaTiO3 polycrystalline composite system. The bulk dielectric dipolar relaxation was attributed to the self-intertwined domain structures from the CaCu3Ti4O12 phase coupled to the dipole relaxation from the CaTiO3 phase, while the space charge relaxation was attributed to the Schottky-type potential barrier responsible for the highly non-Ohmic properties observed in this composite polycrystalline system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The thesis contributed to the volcanic hazard assessment through the reconstruction of some historical flank eruptions of Etna in order to obtain quantitative data (volumes, effusion rates, etc.) for characterizing the recent effusive activity, quantifying the impact on the territory and defining mitigation actions for reducing the volcanic risk as for example containment barriers. The reconstruction was based on a quantitative approach using data extracted from aerial photographs and topographic maps. The approach allows to obtain the temporal evolution of the lava flow field and estimating the Time Average Discharge Rate (TADR) by dividing the volume emplaced over a given time interval for the corresponding duration. The analysis concerned the 2001, 1981 and 1928 Etna eruptions. The choice of these events is linked to their impact on inhabited areas. The results of the analysis showed an extraordinarily high effusion rate for the 1981 and 1928 eruptions (over 600 m^3/s), unusual for Etna eruptions. For the 1981 Etna eruption an eruptive model was proposed to explain the high discharge rate. The obtained TADRs were used as input data for simulations of the propagation of the lava flows for evaluating different scenarios of volcanic hazard and analyse different mitigation actions against lava flow invasion. It was experienced how numerical simulations could be adopted for evaluating the effectiveness of barrier construction and for supporting their optimal design. In particular, the gabions were proposed as an improvement for the construction of barriers with respect to the earthen barriers. The gabion barriers allow to create easily modular structures reducing the handled volumes and the intervention time. For evaluating operational constrain an experimental test was carried out to test the filling of the gabions with volcanic rock and evaluating their deformation during transport and placement.
Resumo:
After the development of power electronics converters, the number of transformers subjected to non-sinusoidal stresses (including DC) has increased in applications such as HVDC links and traction (electric train power cars). The effects of non-sinusoidal voltages on transformer insulation have been investigated by many researchers, but still now, there are some issues that must be understood. Some of those issues are tackled in this Thesis, studying PD phenomena behavior in Kraft paper, pressboard and mineral oil at different voltage conditions like AC, DC, AC+DC, notched AC and square waveforms. From the point of view of converter transformers, it was found that the combined effect of AC and DC voltages produces higher stresses in the pressboard that those that are present under pure DC voltages. The electrical conductivity of the dielectric systems in DC and AC+DC conditions has demonstrated to be a critical parameter, so, its measurement and analysis was also taken into account during all the experiments. Regarding notched voltages, the RMS reduction caused by notches (depending on firing and overlap angles) seems to increase the PDIV. However, the experimental results show that once PD activity has incepted, the notches increase PD repetition rate and magnitude, producing a higher degradation rate of paper. On the other hand, the reduction of mineral oil stocks, their relatively low flash point as well as environmental issues, are factors that are pushing towards the use of esters as transformer insulating fluids. This PhD Thesis also covers the study of two different esters with the scope to validate their use in traction transformers. Mineral oil was used as benchmark. The complete set of dielectric tests performed in the three fluids, show that esters behave better than mineral oil in practically all the investigated conditions, so, their application in traction transformers is possible and encouraged.
Resumo:
We have analyzed a resonant behavior in the dielectric constant associated to the barrier of YBa2Cu3O7 (YBCO) grain boundary Josephson junctions (GBJJs) fabricated on a wide variety of bicrystalline substrates: 12° [0 0 1] tilt asymmetric, 24° [0 0 1] tilt asymmetric, 24° [0 0 1] tilt symmetric, 24° [1 0 0] tilt asymmetric, 45° [1 0 0] tilt asymmetric and 24° [0 0 1] tilt symmetric +45° [1 0 0] tilt asymmetric bicrystals. The resonance analysis allows us to estimate a more appropriate value of the relative dielectric constant, and so a more adequate value for the length L of the normal N region assuming a SNINS model for the barrier. In this work, the L dependence on the critical current density Jc has been investigated. This analysis makes possible a single representation for all the substrate geometries independently on around which axes the rotation is produced to generate the grain boundary. On the other hand, no clear evidences exist on the origin of the resonance. The resonance frequency is in the order of 1011 Hz, pointing to a phonon dynamic influence on the resonance mechanism. Besides, its position is affected by the oxygen content of the barrier: a shift at low frequencies is observed when the misorientation angle increases.
Resumo:
GaN based high electron mobility transistors have draw great attention due to its potential in high temperature, high power and high frequency applications [1, 2]. However, significant gate leakage current is still one of the issues which need to be solved to improve the performance and reliability of the devices [3]. Several research groups have contributed to solve this problem by using metal–oxide–semiconductor HEMTs (MOSHEMTs), with a thin dielectric layer, such as SiO2 [4], Al2O3 [5], HfO2 [6] and Gd2O3 [7] between the gate and the barrier layer on AlGaN/GaN heterostructures. Gd2O3 has shown low interfacial density of states(Dit) with GaN and a high dielectric constant and low electrical leakage currents [8], thus is considered as a promising candidate for the gate dielectrics on GaN. MOS-HEMTs using Gd2O3 grown by electron-beam heating [7] or molecular beam epitaxy (MBE) [8] on GaN or AlGan/GaN structure have been investigated, but further research is still needed in Gd2O3 based AlGaN/GaN MOSHEMTs.