906 resultados para Devonshire Association for the Advancement of Science, Literature and Art
Resumo:
A small research project is currently taking place within a department of the University of Greenwich. The project involves using current technology (Apple’s xServe, iPhones, iPod touch, Podcast Producer application and some 3rd party capture software) with the intention to provide a solution for quick and simple podcasting. This paper also aims to investigate the use of podcasting to help promote and extend the e-learning provision within the school. In short this project aims to justify the use of podcasting as a teaching and learning tool to help enhance student learning while identifying the most appropriate manner to integrate podcasting within an e-learning environment.
Resumo:
Texto en lengua inglesa
Resumo:
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative “Paleoamerican” relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
Resumo:
Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiá and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (∼120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ∼60 to∼80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ∼100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ∼60 to ∼90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Parasites have evolved a plethora of mechanisms to ensure their propagation and evade antagonistic host responses. The intracellular protozoan parasite Theileria is the only eukaryote known to induce uncontrolled host cell proliferation. Survival of Theileria-transformed leukocytes depends strictly on constitutive nuclear factor kappa B (NF-kappaB) activity. We found that this was mediated by recruitment of the multisubunit IkappaB kinase (IKK) into large, activated foci on the parasite surface. IKK signalosome assembly was specific for the transforming schizont stage of the parasite and was down-regulated upon differentiation into the nontransforming merozoite stage. Our findings provide insights into IKK activation and how pathogens subvert host-cell signaling pathways.
Resumo:
Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.