821 resultados para Developing and Validation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of the model in both modes and their procedures are described along with a few sample runs. WEMo model output in RWE mode (wave height and wave energy) is compared against data collected from wave sensors near Harkers Island, North Carolina for validation purposes. Computed results agreed well with the wave sensors data indicating that WEMo can be an effective tool in predicting local wave energy in closed estuarine environments. (PDF contains 31 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal purpose of this document is to assist programme teams throughout the development process when they are considering the development or review of a route through the award where it will be delivered wholly, or primarily, via online distance learning. Please note that this document is current as of Sept 2015 but it is considered to be an evolving document and is updated/tweaked from time to time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic glasses have typically been treated as a “one size fits all” type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs.

Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing a 3.17 mm aluminum sphere at 2.7 km/s at it. The projectile penetrates the first two layers, but is successfully contained by the third.

A large series of metallic glass alloys are created and their wear loss is measured in a pin on disk test. Wear is found to vary dramatically among different metallic glasses, with some considerably outperforming the current state-of-the-art crystalline material (most notably Cu₄₃Zr₄₃Al₇Be₇). Others, on the other hand, suffered extensive wear loss. Commercially available Vitreloy 1 lost nearly three times as much mass in wear as alloy prepared in a laboratory setting. No conclusive correlations can be found between any set of mechanical properties (hardness, density, elastic, bulk, or shear modulus, Poisson’s ratio, frictional force, and run in time) and wear loss. Heat treatments are performed on Vitreloy 1 and Cu₄₃Zr₄₃Al₇Be₇. Anneals near the glass transition temperature are found to increase hardness slightly, but decrease wear loss significantly. Crystallization of both alloys leads to dramatic increases in wear resistance. Finally, wear tests under vacuum are performed on the two alloys above. Vitreloy 1 experiences a dramatic decrease in wear loss, while Cu₄₃Zr₄₃Al₇Be₇ has a moderate increase. Meanwhile, gears are fabricated through three techniques: electrical discharge machining of 1 cm by 3 mm cylinders, semisolid forging, and copper mold suction casting. Initial testing finds the pin on disk test to be an accurate predictor of wear performance in gears.

The final chapter explores an exciting technique in the field of additive manufacturing. Laser engineered net shaping (LENS) is a method whereby small amounts of metallic powders are melted by a laser such that shapes and designs can be built layer by layer into a final part. The technique is extended to mixing different powders during melting, so that compositional gradients can be created across a manufactured part. Two compositional gradients are fabricated and characterized. Ti 6Al¬ 4V to pure vanadium was chosen for its combination of high strength and light weight on one end, and high melting point on the other. It was inspected by cross-sectional x-ray diffraction, and only the anticipated phases were present. 304L stainless steel to Invar 36 was created in both pillar and as a radial gradient. It combines strength and weldability along with a zero coefficient of thermal expansion material. Only the austenite phase is found to be present via x-ray diffraction. Coefficient of thermal expansion is measured for four compositions, and it is found to be tunable depending on composition.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Marine Fisheries Service is required by law to conduct social impact assessments of communities impacted by fishery management plans. To facilitate this process, we developed a technique for grouping communities based on common sociocultural attributes. Multivariate data reduction techniques (e.g. principal component analyses, cluster analyses) were used to classify Northeast U.S. fishing communities based on census and fisheries data. The comparisons indicate that the clusters represent real groupings that can be verified with the profiles. We then selected communities representative of different values on these multivariate dimensions for in-depth analysis. The derived clusters are then compared based on more detailed data from fishing community profiles. Ground-truthing (e.g. visiting the communities and collecting primary information) a sample of communities from three clusters (two overlapping geographically) indicates that the more remote techniques are sufficient for typing the communities for further in-depth analyses. The in-depth analyses provide additional important information which we contend is representative of all communities within the cluster.