937 resultados para Detection, Optimisation, Assessment, Highway
Resumo:
PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.
Resumo:
For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.
Resumo:
Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress.
Resumo:
This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.
Resumo:
Background: Bioimpedance techniques provide a reliable method of assessing unilateral lymphedema in a clinical setting. Bioimpedance devices are traditionally used to assess body composition at a current frequency of 50 kHz. However, these devices are not transferable to the assessment of lymphedema, as the sensitivity of measuring the impedance of extracellular fluid is frequency dependent. It has previously been shown that the best frequency to detect extracellular fluid is 0 kHz (or DC). However, measurement at this frequency is not possible in practice due to the high skin impedance at DC, and an estimate is usually determined from low frequency measurements. This study investigated the efficacy of various low frequency ranges for the detection of lymphedema. Methods and Results: Limb impedance was measured at 256 frequencies between 3 kHz and 1000 kHz for a sample control population, arm lymphedema population, and leg lymphedema population. Limb impedance was measured using the ImpediMed SFB7 and ImpediMed L-Dex® U400 with equipotential electrode placement on the wrists and ankles. The contralateral limb impedance ratio for arms and legs was used to calculate a lymphedema index (L-Dex) at each measurement frequency. The standard deviation of the limb impedance ratio in a healthy control population has been shown to increase with frequency for both the arm and leg. Box and whisker plots of the spread of the control and lymphedema populations show that there exists good differentiation between the arm and leg L-Dex measured for lymphedema subjects and the arm and leg L-Dex measured for control subjects up to a frequency of about 30 kHz. Conclusions: It can be concluded that impedance measurements above a frequency of 30 kHz decrease sensitivity to extracellular fluid and are not reliable for early detection of lymphedema.
Resumo:
In an effort to evaluate and improve their practices to ensure the future excellence of the Texas highway system, the Texas Department of Transportation (TxDOT) sought a forum in which experts from other state departments of transportation could share their expertise. Thus, the Peer State Review of TxDOT Maintenance Practices project was organized and conducted for TxDOT by the Center for Transportation Research (CTR) at The University of Texas at Austin. The goal of the project was to conduct a workshop at CTR and in the Austin District that would educate the visiting peers on TxDOT’s maintenance practices and invite their feedback. CTR and TxDOT arranged the participation of the following directors of maintenance: Steve Takigawa, CA; Roy Rissky, KS; Eric Pitts, GA; Jim Carney, MO; Jennifer Brandenburg, NC; and David Bierschbach, WA. One of the means used to capture the peer reviewers’ opinions was a carefully designed booklet of 15 questions. The peers provided TxDOT with written responses to these questions, and the oral comments made during the workshop were also captured. This information was then compiled and summarized in the following report. An examination of the peers’ comments suggests that TxDOT should use a more holistic, statewide approach to funding and planning rather than funding and planning for each district separately. Additionally, the peers stressed the importance of allocating funds based on the actual conditions of the roadways instead of on inventory. The visiting directors of maintenance also recommended continuing and proliferating programs that enhance communication, such as peer review workshops.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
It is recognised that individuals do not always respond honestly when completing psychological tests. One of the foremost issues for research in this area is the inability to detect individuals attempting to fake. While a number of strategies have been identified in faking, a commonality of these strategies is the latent role of long term memory. Seven studies were conducted in order to examine whether it is possible to detect the activation of faking related cognitions using a lexical decision task. Study 1 found that engagement with experiential processing styles predicted the ability to fake successfully, confirming the role of associative processing styles in faking. After identifying appropriate stimuli for the lexical decision task (Studies 2A and 2B), Studies 3 to 5 examined whether a cognitive state of faking could be primed and subsequently identified, using a lexical decision task. Throughout the course of these studies, the experimental methodology was increasingly refined in an attempt to successfully identify the relevant priming mechanisms. The results were consistent and robust throughout the three priming studies: faking good on a personality test primed positive faking related words in the lexical decision tasks. Faking bad, however, did not result in reliable priming of negative faking related cognitions. To more completely address potential issues with the stimuli and the possible role of affective priming, two additional studies were conducted. Studies 6A and 6B revealed that negative faking related words were more arousing than positive faking related words, and that positive faking related words were more abstract than negative faking related words and neutral words. Study 7 examined whether the priming effects evident in the lexical decision tasks occurred as a result of an unintentional mood induction while faking the psychological tests. Results were equivocal in this regard. This program of research aligned the fields of psychological assessment and cognition to inform the preliminary development and validation of a new tool to detect faking. Consequently, an implicit technique to identify attempts to fake good on a psychological test has been identified, using long established and robust cognitive theories in a novel and innovative way. This approach represents a new paradigm for the detection of individuals responding strategically to psychological testing. With continuing development and validation, this technique may have immense utility in the field of psychological assessment.
Resumo:
The development of highway infrastructure typically requires major capital input over a long period. This often causes serious financial constraints for investors. The push for sustainability has added new dimensions to the complexity in the evaluation of highway projects, particularly on the cost front. This makes the determination of long-term viability even more a precarious exercise. Life-cycle costing analysis (LCCA) is generally recognised as a valuable tool for the assessment of financial decisions on construction works. However to date, existing LCCA models are deficient in dealing with sustainability factors, particularly for infrastructure projects due to their inherent focus on the economic issues alone. This research probed into the major challenges of implementing sustainability in highway infrastructure development in terms of financial concerns and obligations. Using results of research through literature review, questionnaire survey of industry stakeholders and semi-structured interview of senior practitioners involved in highway infrastructure development, the research identified the relative importance of cost components relating to sustainability measures and on such basis, developed ways of improving existing LCCA models to incorporate sustainability commitments into long-term financial management. On such a platform, a decision support model incorporated Fuzzy Analytical Hierarchy Process and LCCA for the evaluation of the specific cost components most concerned by infrastructure stakeholders. Two real highway infrastructure projects in Australia were then used for testing, application and validation, before the decision support model was finalised. Improved industry understanding and tools such as the developed model will lead to positive sustainability deliverables while ensuring financial viability over the lifecycle of highway infrastructure projects.
Resumo:
This paper presents a road survey as part of a workshop conducted by the Texas Department of Transportation (TxDOT) to evaluate and improve the maintenance practices of the Texas highway system. Directors of maintenance from six peer states (California, Kansas, Georgia, Missouri, North Carolina, and Washington) were invited to this 3-day workshop. One of the important parts of this workshop was a Maintenance Test Section Survey (MTSS) to evaluate a number of pre-selected one-mile roadway sections. The workshop schedule allowed half a day to conduct the field survey and 34 sections were evaluated. Each of the evaluators was given a booklet and asked to rate the selected road sections. The goals of the MTSS were to: 1. Assess the threshold level at which maintenance activities are required as perceived by the evaluators from the peer states; 2. Assess the threshold level at which maintenance activities are required as perceived by evaluators from other TxDOT districts; and 3. Perform a pilot evaluation of the MTSS concept. This paper summarizes the information obtained from survey and discusses the major findings based on a statistical analysis of the data and comments from the survey participants.
Resumo:
To assess and improve their practices, and thus ensure the future excellence of the Texas highway system, the Texas Department of Transportation (TxDOT) sought a forum in which experts from other State Departments of Transportation could evaluate the TxDOT maintenance program and practices based on their expertise. To meet this need, a Peer State Review of TxDOT Maintenance Practices project was organized and conducted by the Center for Transportation Research (CTR) at The University of Texas at Austin. CTR researchers, along with TxDOT staff, conducted a workshop to present TxDOT’s maintenance practices to the visiting peer reviewers and invite their feedback. Directors of maintenance from six different states—California, Kansas, Georgia, Missouri, North Carolina, and Washington—participated in the workshop. CTR and TxDOT worked together to design a questionnaire with 15 key questions to capture the peers’ opinions on maintenance program and practices. This paper compiles and summarizes this information. The examination results suggested that TxDOT should use a more state-wide approach to funding and planning, in addition to funding and planning for each district separately. Additionally, the peers recommended that criteria such as condition and level of service of the roadways be given greater weight in the funding allocation than lane miles or vehicle miles traveled (VMT). The Peer Reviewers also determined that TxDOT maintenance employee experience and communications were strong assets. Additional strengths included the willingness of TxDOT to invite peer reviews of their practices and a willingness to consider opportunities for improvement.
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
Chronic venous leg ulcers are a detrimental health issue plaguing our society, resulting in long term pain, immobility and decreased quality of life for a large proportion of sufferers. The frequency of these chronic wounds has led current research to focus on the wound environment to provide important information regarding the prolonged, fluctuated or static healing patterns of these wounds. Disruption to the normal wound healing process results in release of multiple factors in the wound environment that could correlate to wound chronicity. These biochemical factors can often be detected through non-invasively sampling chronic wound fluid (CWF) from the site of injury. Of note, whilst there are numerous studies comparing acute and chronic wound fluids, there have not been any reports in the literature employing a longitudinal study in order to track biochemical changes in wound fluid as patients transition from a non-healing to healed state. Initially the objective of this study was to identify biochemical changes in CWF associated with wound healing using a proteomic approach. The proteomic approach incorporated a multi-dimensional liquid chromatography fractionation technique coupled with mass spectrometry (MS) to enable identification of proteins present in lower concentrations in CWF. Not surprisingly, many of the proteins identified in wound fluid were acute phase proteins normally expressed during the inflammatory phase of healing. However, the number of proteins positively identified by MS was quite low. This was attributed to the diverse range in concentration of protein species in CWF making it challenging to detect the diagnostically relevant low molecular weight proteins. In view of this, SELDI-TOF MS was also explored as a means to target low molecular weight proteins in sequential patient CWF samples during the course of healing. Unfortunately, the results generated did not yield any peaks of interest that were altered as wounds transitioned to a healed state. During the course of proteomic assessment of CWF, it became evident that a fraction of non-proteinaceous compounds strongly absorbed at 280 nm. Subsequent analyses confirmed that most of these compounds were in fact part of the purine catabolic pathway, possessing distinctive aromatic rings and which results in high absorbance at 254 nm. The accumulation of these purinogenic compounds in CWF suggests that the wound bed is poorly oxygenated resulting in a switch to anaerobic metabolism and consequently ATP breakdown. In addition, the presence of the terminal purine catabolite, uric acid (UA), indicates that the enzyme xanthine oxidoreductase (XOR) catalyses the reaction of hypoxanthine to xanthine and finally to UA. More importantly, the studies provide evidence for the first time of the exogenous presence of XOR in CWF. XOR is the only enzyme in humans capable of catalysing the production of UA in conjunction with a burst of the highly reactive superoxide radical and other oxidants like H2O2. Excessive release of these free radicals in the wound environment can cause cellular damage disrupting the normal wound healing process. In view of this, a sensitive and specific assay was established for monitoring low concentrations of these catabolites in CWF. This procedure involved combining high performance liquid chromatography (HPLC) with tandem mass spectrometry and multiple reaction monitoring (MRM). This application was selective, using specific MRM transitions and HPLC separations for each analyte, making it ideal for the detection and quantitation of purine catabolites in CWF. The results demonstrated that elevated levels of UA were detected in wound fluid obtained from patients with clinically worse ulcers. This suggests that XOR is active in the wound site generating significant amounts of reactive oxygen species (ROS). In addition, analysis of the amount of purine precursors in wound fluid revealed elevated levels of purine precursors in wound fluid from patients with less severe ulcers. Taken together, the results generated in this thesis suggest that monitoring changes of purine catabolites in CWF is likely to provide valuable information regarding the healing patterns of chronic venous leg ulcers. XOR catalysis of purine precursors not only provides a method for monitoring the onset, prognosis and progress of chronic venous leg ulcers, but also provides a potential therapeutic target by inhibiting XOR, thus blocking UA and ROS production. Targeting a combination of these purinogenic compounds and XOR could lead to the development of novel point of care diagnostic tests. Therefore, further investigation of these processes during wound healing will be worthwhile and may assist in elucidating the pathogenesis of this disease state, which in turn may lead to the development of new diagnostics and therapies that target these processes.
Resumo:
Background Comprehensive geriatric assessment has been shown to improve patient outcomes, but the geriatricians who deliver it are in short-supply. A web-based method of comprehensive geriatric assessment has been developed with the potential to improve access to specialist geriatric expertise. The current study aims to test the reliability and safety of comprehensive geriatric assessment performed “online” in making geriatric triage decisions. It will also explore the accuracy of the procedure in identifying common geriatric syndromes, and its cost relative to conventional “live” consultations. Methods/Design The study population will consist of 270 acutely hospitalized patients referred for geriatric consultation at three sites. Paired assessments (live and online) will be conducted by independent, blinded geriatricians and the level of agreement examined. This will be compared with the level of agreement between two independent, blinded geriatricians each consulting with the patient in person (i.e. “live”). Agreement between the triage decision from live-live assessments and between the triage decision from live-online assessments will be calculated using kappa statistics. Agreement between the online and live detection of common geriatric syndromes will also be assessed using kappa statistics. Resource use data will be collected for online and live-live assessments to allow comparison between the two procedures. Discussion If the online approach is found to be less precise than live assessment, further analysis will seek to identify patient subgroups where disagreement is more likely. This may enable a protocol to be developed that avoids unsafe clinical decisions at a distance. Trial registration Trial registration number: ACTRN12611000936921
Resumo:
The modern structural diagnosis process is rely on vibration characteristics to assess safer serviceability level of the structure. This paper examines the potential of change in flexibility method to use in damage detection process and two main practical constraints associated with it. The first constraint addressed in this paper is reduction in number of data acquisition points due to limited number of sensors. Results conclude that accuracy of the change in flexibility method is influenced by the number of data acquisition points/sensor locations in real structures. Secondly, the effect of higher modes on damage detection process has been studied. This addresses the difficulty of extracting higher order modal data with available sensors. Four damage indices have been presented to identify their potential of damage detection with respect to different locations and severity of damage. A simply supported beam with two degrees of freedom at each node is considered only for a single damage cases throughout the paper.