971 resultados para Design rules


Relevância:

60.00% 60.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a hollow flange channel made from cold-formed steel using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. LSBs are currently used as floor joists and bearers in buildings. However, there are no appropriate design standards available due to its unique hollow flange geometry, residual stress characteristics and initial geometric imperfections arising from manufacturing processes. Recent research studies have focused on investigating the structural behaviour of LSBs under pure bending, predominant shear and combined actions. However, web crippling behaviour and strengths of LSBs still need to be examined. Therefore, an experimental study was undertaken to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 23 web crippling tests were performed and the results were compared with the current AS/NZS 4600 and AISI S100 design standards, which showed that the cold-formed steel design rules predicted the web crippling capacity of LSB sections very conservatively under EOF and IOF load cases. Therefore, suitably improved design equations were proposed to determine the web crippling capacity of LSBs based on experimental results. In addition, new design equations were also developed under the Direct Strength Method format. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases and the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs. In this research finite element models of rivet fastened RHFCBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. This paper presents the details of the finite element models of rivet fastened RHFCBs and the results. Both finite element analysis and experimental results showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. No research has been undertaken on the shear behaviour and strength of rivet fastened RHFCBs with web openings. Hence a detailed experimental study involving 30 shear tests was undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs with web openings. Experimental results showed that the current design rules are inadequate for the shear design of Rivet fastened RHFCBs with web openings. Improved design equations have been proposed for the shear strength of rivet fastened RHFCBs with web openings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. To date, no investigation has been conducted on their web crippling behaviour and strengths. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of rivet fastened RHFCBs under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. Experimental results showed that the current design rules are unconservative for rivet fastened RHFCB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of rivet fastened RHFCBs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical transport behavior of organic photo-voltaic devices with nano-pillar transparent electrodes is investigated in this paper in order to understand possible enhancement of their charge-collection efficiency. Modeling and simulations of optical transport due to this architecture show an interesting regime of length-scale dependent optical characteristics. An electromagnetic wave propagation model is employed with simulation objectives toward understanding the mechanism of optical scattering and waveguide effects due to the nano-pillars and effective transmission through the active layer. Partial filling of gaps between the nano-pillars due to the nano-fabrication process is taken into consideration. Observations made in this paper will facilitate appropriate design rules for nano-pillar electrodes. (C) 2014 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a simple hysteretic method to obtain the energy required to operate the gate-drive, sensors, and other circuits within nonneutral ac switches intended for use in load automated buildings. The proposed method features a switch-mode low part-count self-powered MOSFET ac switch that achieves efficiency and load current THD figures comparable to those of an externally gate-driven switch built using similar MOSFETS. The fundamental operation of the method is explained in detail, followed by the modifications required for practical implementation. Certain design rules that allow the method to accommodate a wide range of single-phase loads from 10 VA to 1 kVA are discussed, along with an efficiency enhancement feature based on inherent MOSFET characteristics. The limitations and side effects of the method are also mentioned according to their levels of severity. Finally, experimental results obtained using a prototype sensor switch are presented, along with a performance comparison of the prototype with an externally gate-driven MOSFET switch.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed study of the design issues relevant to long-wavelength monolithic mode-locked lasers is presented. Following a detailed review of the field, we have devised a validated travelling wave model to explore the limits of mode-locking in monolithic laser diodes, not only in terms of pulse duration and repetition rate, but also in terms of stability. It is shown that fast absorber recovery is crucial for short pulse width, that the ratio of gain to absorption saturation is key in accessing ultrashort pulses and that low alpha factors give only modest benefit. Finally, optimized contact layouts are shown to greatly enhance pulse stability and the overall operational success. The design rules show high levels of consistency with published experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. © 2012 Tan et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size. © 2005 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertically aligned carbon nanotube (CNT) 'forest' microstructures fabricated by chemical vapor deposition (CVD) using patterned catalyst films typically have a low CNT density per unit area. As a result, CNT forests have poor bulk properties and are too fragile for integration with microfabrication processing. We introduce a new self-directed capillary densification method where a liquid is controllably condensed onto and evaporated from the CNT forests. Compared to prior approaches, where the substrate with CNTs is immersed in a liquid, our condensation approach gives significantly more uniform structures and enables precise control of the CNT packing density. We present a set of design rules and parametric studies of CNT micropillar densification by self-directed capillary action, and show that self-directed capillary densification enhances Young's modulus and electrical conductivity of CNT micropillars by more than three orders of magnitude. Owing to the outstanding properties of CNTs, this scalable process will be useful for the integration of CNTs as a functional material in microfabricated devices for mechanical, electrical, thermal and biomedical applications. © 2011 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses results from a highly interdisciplinary research project which investigated different packaging options for ultra-fine pitch, low temperature and low cost flip-chip assembly. Isotropic Conductive Adhesives (ICAs) are stencil printed to form the interconnects for the package. ICAs are utilized to ensure a low temperature assembly process of flip-chip copper column bumped packages. Results are presented on the structural integrity of novel electroformed stencils. ICA deposits at sub-100 micron pitch and the subsequent thermo-mechanical behaviour of the flip-chip ICA joints are analysed using numerical modelling techniques. Optimal design rules for enhanced performance and thermomechanical reliability of ICA assembled flip-chip packages are formulated.