885 resultados para Design problems
Resumo:
Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.
Resumo:
This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.
Resumo:
When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.
Resumo:
In this study, we present a framework based on ant colony optimization (ACO) for tackling combinatorial problems. ACO algorithms have been applied to many diferent problems, focusing on algorithmic variants that obtain high-quality solutions. Usually, the implementations are re-done for various problem even if they maintain the same details of the ACO algorithm. However, our goal is to generate a sustainable framework for applications on permutation problems. We concentrate on understanding the behavior of pheromone trails and specific methods that can be combined. Eventually, we will propose an automatic offline configuration tool to build an efective algorithm. ---RESUMEN---En este trabajo vamos a presentar un framework basado en la familia de algoritmos ant colony optimization (ACO), los cuales están dise~nados para enfrentarse a problemas combinacionales. Los algoritmos ACO han sido aplicados a diversos problemas, centrándose los investigadores en diversas variantes que obtienen buenas soluciones. Normalmente, las implementaciones se tienen que rehacer, inclusos si se mantienen los mismos detalles para los algoritmos ACO. Sin embargo, nuestro objetivo es generar un framework sostenible para aplicaciones sobre problemas de permutaciones. Nos centraremos en comprender el comportamiento de la sendas de feromonas y ciertos métodos con los que pueden ser combinados. Finalmente, propondremos una herramienta para la configuraron automática offline para construir algoritmos eficientes.
Resumo:
Mode of access: Internet.
Resumo:
"August 1978."
Resumo:
[v.1.] 1950-1954.--v.2. 1955-1958.
Resumo:
Mode of access: Internet.
Resumo:
"Complementary to ... ʻTechnical aerodynamics' by the same author."--Pref.
Resumo:
This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.
Resumo:
* The research work reviewed in this paper has been carried out in the context of the Russian Foundation for Basic Research funded project “Adaptable Intelligent Interfaces Research and Development for Distance Learning Systems”(grant N 02-01-81019). The authors wish to acknowledge the co-operation with the Byelorussian partners of this project.
Resumo:
Networked control over data networks has received increasing attention in recent years. Among many problems in networked control systems (NCSs) is the need to reduce control latency and jitter and to deal with packet dropouts. This paper introduces our recent progress on a queuing communication architecture for real-time NCS applications, and simple strategies for dealing with packet dropouts. Case studies for a middle-scale process or multiple small-scale processes are presented for TCP/IP based real-time NCSs. Variations of network architecture design are modelled, simulated, and analysed for evaluation of control latency and jitter performance. It is shown that a simple bandwidth upgrade or adding hierarchy does not necessarily bring benefits for performance improvement of control latency and jitter. A co-design of network and control is necessary to maximise the real-time control performance of NCSs
Resumo:
Design as seen from the designer's perspective is a series of amazing imaginative jumps or creative leaps. But design as seen by the design historian is a smooth progression or evolution of ideas that they seem self-evident and inevitable after the event. But the next step is anything but obvious for the artist/creator/inventor/designer stuck at that point just before the creative leap. They know where they have come from and have a general sense of where they are going, but often do not have a precise target or goal. This is why it is misleading to talk of design as a problem-solving activity - it is better defined as a problem-finding activity. This has been very frustrating for those trying to assist the design process with computer-based, problem-solving techniques. By the time the problem has been defined, it has been solved. Indeed the solution is often the very definition of the problem. Design must be creative-or it is mere imitation. But since this crucial creative leap seem inevitable after the event, the question must arise, can we find some way of searching the space ahead? Of course there are serious problems of knowing what we are looking for and the vastness of the search space. It may be better to discard altogether the term "searching" in the context of the design process: Conceptual analogies such as search, search spaces and fitness landscapes aim to elucidate the design process. However, the vastness of the multidimensional spaces involved make these analogies misguided and they thereby actually result in further confounding the issue. The term search becomes a misnomer since it has connotations that imply that it is possible to find what you are looking for. In such vast spaces the term search must be discarded. Thus, any attempt at searching for the highest peak in the fitness landscape as an optimal solution is also meaningless. Futhermore, even the very existence of a fitness landscape is fallacious. Although alternatives in the same region of the vast space can be compared to one another, distant alternatives will stem from radically different roots and will therefore not be comparable in any straightforward manner (Janssen 2000). Nevertheless we still have this tantalizing possibility that if a creative idea seems inevitable after the event, then somehow might the process be rserved? This may be as improbable as attempting to reverse time. A more helpful analogy is from nature, where it is generally assumed that the process of evolution is not long-term goal directed or teleological. Dennett points out a common minsunderstanding of Darwinism: the idea that evolution by natural selection is a procedure for producing human beings. Evolution can have produced humankind by an algorithmic process, without its being true that evolution is an algorithm for producing us. If we were to wind the tape of life back and run this algorithm again, the likelihood of "us" being created again is infinitesimally small (Gould 1989; Dennett 1995). But nevertheless Mother Nature has proved a remarkably successful, resourceful, and imaginative inventor generating a constant flow of incredible new design ideas to fire our imagination. Hence the current interest in the potential of the evolutionary paradigm in design. These evolutionary methods are frequently based on techniques such as the application of evolutionary algorithms that are usually thought of as search algorithms. It is necessary to abandon such connections with searching and see the evolutionary algorithm as a direct analogy with the evolutionary processes of nature. The process of natural selection can generate a wealth of alternative experiements, and the better ones survive. There is no one solution, there is no optimal solution, but there is continuous experiment. Nature is profligate with her prototyping and ruthless in her elimination of less successful experiments. Most importantly, nature has all the time in the world. As designers we cannot afford prototyping and ruthless experiment, nor can we operate on the time scale of the natural design process. Instead we can use the computer to compress space and time and to perform virtual prototyping and evaluation before committing ourselves to actual prototypes. This is the hypothesis underlying the evolutionary paradigm in design (1992, 1995).