873 resultados para Design of Experiments and Sample Surveys
Resumo:
The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.
The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.
The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.
Resumo:
This paper investigates the effects of experience on the intuitiveness of physical and visual interactions performed by airport security screeners. Using portable eye tracking glasses, 40 security screeners were observed in the field as they performed search, examination and interface interactions during airport security x-ray screening. Data from semi structured interviews was used to further explore the nature of visual and physical interactions. Results show there are positive relationships between experience and the intuitiveness of visual and physical interactions performed by security screeners. As experience is gained, security screeners are found to perform search, examination and interface interactions more intuitively. In addition to experience, results suggest that intuitiveness is affected by the nature and modality of activities performed. This inference was made based on the dominant processing styles associated with search and examination activities. The paper concludes by discussing the implications that this research has for the design of visual and physical interfaces. We recommend designing interfaces that build on users’ already established intuitive processes, and that reduce the cognitive load incurred during transitions between visual and physical interactions.
Resumo:
The use of stereochemically constrained amino acids permits the design of short peptides as models for protein secondary structures. Amino acid residues that are restrained to a limited range of backbone torsion angles (ϕ-ψ) may be used as folding nuclei in the design of helices and β-hairpins. α-Amino-isobutyric acid (Aib) and related Cαα dialkylated residues are strong promoters of helix formation, as exemplified by a large body of experimentally determined structures of helical peptides. DPro-Xxx sequences strongly favor type II’ turn conformations, which serve to nucleate registered β-hairpin formation. Appropriately positioned DPro-Xxx segments may be used to nucleate the formation of multistranded antiparallel β-sheet structures. Mixed (α/β) secondary structures can be generated by linking rigid modules of helices and β-hairpins. The approach of using stereochemically constrained residues promotes folding by limiting the local structural space at specific residues. Several aspects of secondary structure design are outlined in this chapter, along with commonly used methods of spectroscopic characterization.
Resumo:
The interaction between large deflections, rotation effects and unsteady aerodynamics makes the dynamic analysis of rotating and flapping wing a nonlinear aeroelastic problem. This problem is governed by nonlinear periodic partial differential equations whose solution is needed to calculate the response and loads acting on vehicles using rotary or flapping wings for lift generation. We look at three important problems in this paper. The first problem shows the effect of nonlinear phenomenon coming from piezoelectric actuators used for helicopter vibration control. The second problem looks at the propagation on material uncertainty on the nonlinear response, vibration and aeroelastic stability of a composite helicopter rotor. The third problem considers the use of piezoelectric actuators for generating large motions in a dragonfly inspired flapping wing. These problems provide interesting insights into nonlinear aeroelasticity and show the likelihood of surprising phenomenon which needs to be considered during the design of rotary and flapping wing vehicle
Resumo:
GPR is widely used for ballast fouling identification, however, there are no robust guidelines to find the degree and type of fouling quantitatively. In this study, GPR studies were carried out on model and actual railway tracks using three ground coupled antennas and considering three fouling materials. Three ground coupled antennas viz., 100 MHz, 500 MHz and 800 MHz antennas were used for the initial survey and it was found that the 800 MHz ground coupled antenna is an optimum one to get quality results. Three major fouling materials viz., screened/broken ballast, coal and iron ore were used to construct prototype model sections, which were 1/2 of the actual Indian broad-gauge railway track. A separate model section has been created for each degree and type of fouling and GPR surveys were carried out. GPR study shows that increasing the fouling content results in a decrease in the Electromagnetic Wave (EMW) velocity and an increase in the dielectric constant. EMW velocity of ballast fouled with screened ballast was found to be more than coal fouled ballast and iron ore fouled ballast at any degree of fouling and EMW velocity of iron ore fouled ballast was found to be less than coal and screen ballast fouled ballast. Dielectric constant of iron ore fouled ballast was found to be higher than coal and screen ballast fouled ballast for all degrees of fouling. Average slope of the trend line of screen ballast fouled section is low (25.6 degrees), coal fouled ballast is medium (27.8 degrees) and iron ore fouled ballast is high (47.6 degrees). (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.
The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.
Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.
The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.
Resumo:
Abstract An HPLC method has been developed and validated for the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples. The method utilises 200 µl of plasma and sample preparation involves protein precipitation followed by Solid Phase Extraction (SPE). Determination of standard curves of peak height ratio (PHR) against concentration was performed by weighted least squares linear regression using a weighting factor of 1/concentration2. The developed method was found to be linear over concentration ranges of 30–1000 ng/ml for spironolactone and 25–1000 ng/ml for 7a-thiomethylspirolactone and canrenone. The lower limit of quantification for spironolactone, 7a-thiomethylspirolactone and canrenone were calculated as 28, 20 and 25 ng/ml, respectively. The method was shown to be applicable to the determination of spironolactone, 7a-thiomethylspirolactone and canrenone in paediatric plasma samples and also plasma from healthy human volunteers.
Resumo:
Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rota-tion of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.
Resumo:
Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy.
Resumo:
Background: Becoming a parent of a preterm baby requiring neonatal care constitutes an extraordinary life situation in which parenting begins and evolves in a medical and unfamiliar setting. Although there is increasing emphasis within maternity and neonatal care on the influence of place and space upon the experiences of staff and service users, there is a lack of research on how space and place influence relationships and care in the neonatal environment. The aim of this study was to explore, in-depth, the impact of place and space on parents’ experiences and practices related to feeding their preterm babies in Neonatal Intensive Care Units (NICUs) in Sweden and England. Methods: An ethnographic approach was utilised in two NICUs in Sweden and two comparable units in England, UK. Over an eleven month period, a total of 52 mothers, 19 fathers and 102 staff were observed and interviewed. A grounded theory approach was utilised throughout data collection and analysis. Results: The core category of ‘the room as a conveyance for an attuned feeding’ was underpinned by four categories: the level of ‘ownership’ of space and place; the feeling of ‘at-homeness’; the experience of ‘the door or a shield’ against people entering, for privacy, for enabling a focus within, and for regulating socialising and the; ‘window of opportunity’. Findings showed that the construction and design of space and place was strongly influential on the developing parent-infant relationship and for experiencing a sense of connectedness and a shared awareness with the baby during feeding, an attuned feeding. Conclusions: If our proposed model is valid, it is vital that these findings are considered when developing or reconfiguring NICUs so that account is taken of the influences of spatiality upon parent’s experiences. Even without redesign there are measures that may be taken to make a positive difference for parents and their preterm babies.
Resumo:
An international seminar-workshop entitled "Facilitation of trade and transport in Latin America: situation and outlook" was held at the headquarters of the Economic Commission for Latin America and the Caribbean (ECLAC) on 29 and 30 November 2005, organized jointly by the ECLAC Division of International Trade and Integration and the United Nations Conference on Trade and Development (UNCTAD). The event was attended by about 50 persons involved in customs modernization and/or the implementation of single window systems for foreign trade in 20 Ibero-American countries.The main purpose of the seminar-workshop was to exchange ideas, opinions and proposals concerning the efficient implementation of trade facilitation instruments. The conclusions reached at this event point to the need to seek convergence among the existing trade agreements associated with trade facilitation in Latin America. Customs modernization requires the re-design of processes and procedures in order to achieve interoperability among the systems, and single window systems for foreign trade can only be implemented successfully if clear political leadership is established with broad participation from both public and private organizations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work encourages the exercise of consideration, observation and critical reading of the design of handbags and the relation to the conditions imposed by tropical climate. Our purpose is to highlight some critical and conceptual thoughts on the matter of the design of fashion accessories in Brazil, ergonomics and aesthetic-functional relation. Through physical concepts is possible to propose consistents solutions compatible with the reality of the costumers living on Brazilian coast.
Resumo:
We focus on kernels incorporating different kinds of prior knowledge on functions to be approximated by Kriging. A recent result on random fields with paths invariant under a group action is generalised to combinations of composition operators, and a characterisation of kernels leading to random fields with additive paths is obtained as a corollary. A discussion follows on some implications on design of experiments, and it is shown in the case of additive kernels that the so-called class of “axis designs” outperforms Latin hypercubes in terms of the IMSE criterion.