929 resultados para Derugin Basin barite mountains
Resumo:
In order to map the modern distribution of diatoms and to establish a reliable reference data set for paleoenvironmental reconstruction in the northern North Pacific, a new data set including the relative abundance of diatom species preserved in a total of 422 surface sediments was generated, which covers a broad range of environmental variables characteristic of the subarctic North Pacific, the Sea of Okhotsk and the Bering Sea between 30° and 70°N. The biogeographic distribution patterns as well as the preferences in sea surface temperature of 38 diatom species and species groups are documented. A Q-mode factor analysis yields a three-factor model representing assemblages associated with the Arctic, Subarctic and Subtropical water mass, indicating a close relationship between the diatom composition and the sea surface temperatures. The relative abundance pattern of 38 diatom species and species groups was statistically compared with nine environmental variables, i.e. the summer sea surface temperature and salinity, annual surface nutrient concentration (nitrate, phosphate, silicate), summer and winter mixed layer depth and summer and winter sea ice concentrations. Canonical Correspondence Analysis (CCA) indicates 32 species and species groups have strong correspondence with the pattern of summer sea surface temperature. In addition, the total diatom flux data compiled from ten sediment traps reveal that the seasonal signals preserved in the surface sediments are mostly from spring through autumn. This close relationship between diatom composition and the summer sea surface temperature will be useful in deriving a transfer function in the subarctic North Pacific for the quantitative paleoceanographic and paleoenvironmental studies. The relative abundance of the sea-ice indicator diatoms Fragilariopsis cylindrus and F. oceanica of >20% in the diatom composition is used to represent the winter sea ice edge in the Bering Sea. The northern boundary of the distribution of F. doliolus in the open ocean is suggested to be an indicator of the Subarctic Front, while the abundance of Chaetoceros resting spores may indicate iron input from nearby continents and shelves and induced productivity events in the study area.
Resumo:
The late Eocene through earliest Oligocene (40-32 Ma) spans a major transition from greenhouse to icehouse climate, with net cooling and expansion of Antarctic glaciation shortly after the Eocene/Oligocene (E/O) boundary. We investigated the response of the oceanic biosphere to these changes by reconstructing barite and CaCO3 accumulation rates in sediments from the equatorial and North Pacific Ocean. These data allow us to evaluate temporal and geographical variability in export production and CaCO3 preservation. Barite accumulation rates were on average higher in the warmer late Eocene than in the colder early Oligocene, but cool periods within the Eocene were characterized by peaks in both barite and CaCO3 accumulation in the equatorial region. We infer that climatic changes not only affected deep ocean ventilation and chemistry, but also had profound effects on surface water characteristics influencing export productivity. The ratio of CaCO3 to barite accumulation rates, representing the ratio of particulate inorganic C accumulation to Corg export, increased dramatically at the E/O boundary. This suggests that long-term drawdown of atmospheric CO2 due to organic carbon deposition to the seafloor decreased, potentially offsetting decreasing pCO2 levels and associated cooling. The relatively larger increase in CaCO3 accumulation compared to export production at the E/O suggests that the permanent deepening of the calcite compensation depth (CCD) at that time stems primarily from changes in deep water chemistry and not from increased carbonate production.
Resumo:
The Goulburn River’s cold, clear waters rush westward down from the steep hills and mountains of the Great Dividing Range toward Seymour. The river then turns northward and meanders through hills and plains until the river meets the Murray upstream of Echuca. These are the traditional lands of the Taungurung, Bangerang and Yorta Yorta peoples. However, the Goulburn River today is not the river the Taungurung, Bangerang and Yorta Yorta once knew and fished...
Resumo:
The Upper Murrumbidgee cuts its way through the Snowy Mountains in south‐eastern New South Wales, snaking its way south, then turning north before dropping into the lowland and heading west to join the Murray downstream of Swan Hill. The Upper ‘Bidgee floodplain is only a couple of hundred metres wide, a stark contrast to the kilometres‐wide floodplains in other parts of the Murray‐ Darling Basin. When the floods come, they come up quickly and roar through the narrow valleys. These are the traditional lands of the Ngunnawal and Ngarigo peoples. They fished the river and surrounding waterways and hunted the wetlands. The seasonal rise and fall of the water guided their travels and featured in their stories. The Ngunnawal and Ngarigo people have seen their land and the river change...
Resumo:
Over the past two decades, magnetoclimatological studies of loess-paleosol sequences in the Chinese Loess Plateau (CLP) have made outstanding achievements, which greatly promote the understanding of East Asian paleomonsoon evolution, inland aridification of Asia, and past global climate changes. Loess magnetic properties of the CLP have been well studied. In contrast, loess magnetic properties from outside the CLP in China have not been fully understood. We have little knowledge about the magnetic properties of loess in the Ili Basin, an intermontane depression of the Tianshan (or Tien Shan) Mountains. Here, we present the results of rock magnetic measurements of the Ili loess including mass magnetic susceptibility (χ) and anhysteretic remanent magnetization (ARM), high/low temperature dependence of susceptibility (TDS) and hysteresis, as well as X-ray diffraction (XRD) for mineral analysis. Based on the comparison with loess-paleosol sequences in the CLP (hereafter referred to as the Chinese loess), we discuss the possible magnetic susceptibility enhancement mechanism of the Ili loess. The results show that 1) the total magnetic mineral concentration of the Ili loess is far lower than that of the Chinese loess, though they have similar magnetic mineral compositions. The ferrimagnetic minerals in the Ili loess are magnetite and maghemite, and the antiferromagnetic mineral is hematite; XRD analysis also identifies the presence of ilmenite. The ratio of maghemite is lower in the Ili loess than in the Chinese loess, but the ratios of magnetite and hematite are higher in the Ili loess than in the Chinese loess. 2) The granularity of magnetic minerals in the Ili loess, dominated by pseudo-single domain (PSD) and multi-domain (MD) grains, is generally much coarser than that of the Chinese loess. Ultrafine pedogenically-produced magnetic grains have a very limited contribution to the susceptibility enhancement. Rather, PSD and MD particles of magnetite and maghemite are the main contributors to the enhancement of susceptibility in the Ili loess. 3) The susceptibility enhancement mechanism for the Ili loess is complicated and superimposes both a wind velocity/vigor model (Alaskan or Siberian model) and the in situ ultrafine grain pedogenic model; the former might play an important role in the Ili loess. 4) Magnetic susceptibility enhancements of the Ili loess are related not only to the eolian input of the source area, but also to the local climate, landform, and geological background. Therefore, great care should be taken when reconstructing paleoclimate using magnetic susceptibility data from the Ili loess.