989 resultados para Dental hard tissue
Resumo:
Traumatic injury to the dentition of dipnoans, indirectly as a result of jaw fracture, or directly from damage to the tooth tissues, is present throughout the history of this group, in fossil and in Recent material. Bones heal, but traces of the injury are retained in the tooth tissues, permanently if the proliferative regions of the tooth plate are injured, or until the damaged dentines are removed by wear if the growing regions are left intact. Lack of resorption and repair of damaged dental hard tissues in dipnoans has implications for some models of tooth plate growth in lungfish with a permanent dentition, because this indicates that lungfish tooth plates may not have the capacity to form reparative dentine as part of the normal growth processes.
Resumo:
Salivary contamination is one of the factors that can disturb the sealing process and interfere in the longevity of pit and fissure sealants. Erbium : yttrium-aluminum-garnet (Er : YAG) laser could influence the bond strength of enamel and increase the acid resistance. To evaluate the influence of Er : YAG laser on the shear bond strength of a sealant to a salivary contaminated enamel surface. Twenty-four third molars had the roots sectioned 2 mm coronal to the cementoenamel junction. The crowns were mesiodistally sectioned providing 48 halves that were embedded in polyester resin. Enamel was flattened and a 2-mm diameter bonding area was demarcated. Specimens were randomly assigned to two groups according to the superficial pretreatment-37% phosphoric acid (A) and Er : YAG laser (80 mJ/2 Hz) + phosphoric acid (L), which were subdivided into two groups (N = 12), without salivary contamination (C) and with salivary contamination (SC). To contaminate the specimens, 0.25 mL of human fresh saliva was applied for 20 seconds and then dried. Fluroshield sealant was applied in all specimens. After storage, shear bond strength of samples were tested in a universal testing machine. Means in MPa were: AC-14.61 (+/- 2.52); ASC-6.66 (+/- 2.34); LC-11.91 (+/- 1.34); and LSC-2.22 (+/- 0.66). Statistical analysis revealed that surfaces without salivary contamination and with acid treatment had the highest mean (p < 0.05). The group with salivary contamination treated by Er : YAG laser followed by phosphoric acid application presented the lowest bond values (p < 0.05). The phosphoric acid etching under dry condition yielded better bonding performance. Er : YAG laser was not able to increase the effectiveness of conventional acid etching of enamel in the bond of sealants in both dry and wet conditions. Under the conditions of this study, the conventional etching protocol (phosphoric acid without salivary contamination) is still preferable to laser-conditioning enamel surface prior to sealant application.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.
Resumo:
Our objective was to observe the biodegradable and osteogenic properties of magnesium scaffolding under in vivo conditions. Twelve 6-month-old male New Zealand white rabbits were randomly divided into two groups. The chosen operation site was the femoral condyle on the right side. The experimental group was implanted with porous magnesium scaffolds, while the control group was implanted with hydroxyapatite scaffolds. X-ray and blood tests, which included serum magnesium, alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were performed serially at 1, 2, and 3 weeks, and 1, 2, and 3 months. All rabbits were killed 3 months postoperatively, and the heart, kidney, spleen, and liver were analyzed with hematoxylin and eosin (HE) staining. The bone samples were subjected to microcomputed tomography scanning (micro-CT) and hard tissue biopsy. SPSS 13.0 (USA) was used for data analysis, and values of P<0.05 were considered to be significant. Bubbles appeared in the X-ray of the experimental group after 2 weeks, whereas there was no gas in the control group. There were no statistical differences for the serum magnesium concentrations, ALT, BUN, and CREA between the two groups (P>0.05). All HE-stained slices were normal, which suggested good biocompatibility of the scaffold. Micro-CT showed that magnesium scaffolds degraded mainly from the outside to inside, and new bone was ingrown following the degradation of magnesium scaffolds. The hydroxyapatite scaffold was not degraded and had fewer osteoblasts scattered on its surface. There was a significant difference in the new bone formation and scaffold bioabsorption between the two groups (9.29±1.27 vs 1.40±0.49 and 7.80±0.50 vs 0.00±0.00 mm3, respectively; P<0.05). The magnesium scaffold performed well in degradation and osteogenesis, and is a promising material for orthopedics.
Resumo:
Aim To evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model. Material and methods In the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm). Conclusions The use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e. g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments.
Resumo:
Purpose: This study evaluated oropharyngeal airway changes and stability following surgical counter-clockwise rotation and advancement of the maxillo-mandibular complex.Methods and Patients: Fifty-six adults (48 females, 8 males), between 15 and 51 years of age, were treated with Le Fort I osteotomies and bilateral mandibular ramus sagittal split osteotomies to advance the maxillo-mandibular complex with a counter-clockwise rotation. The average postsurgical follow-up was 34 months. Each patient's lateral cephalograms were traced, digitized twice, and averaged to estimate Surgical changes (T2-T1) and Postsurgical changes (T3-T2).Results: During surgery, the occlusal plane angle decreased significantly (8.6 +/- 5.8 degrees) and the maxillo-mandibular complex advanced and rotated counter-clock-wise. The maxilla moved forward (2.4 +/- 2.7 mm) at ANS and the mandible was advanced 13.1 +/- 5.1 min at menton, 10 +/- 4.4 mm at point B, and 6.9 +/- 3.7 mm at lower incisor edge. Postsurgical hard tissue changes were not statistically significant. While the upper oropharyngeal airway decreased significantly (4.2 +/- 3.4 min) immediately after surgery, the narrowest retropalatal, lowest retropalatal airway, and the narrowest retroglossal airway measurements increased 2.9 +/- 2.7, 3.7 +/- 3.2, and 4.4 +/- 4.4 mm, respectively. Over the average 34 months Postsurgical period, upper retropalatal airway increased 3.9 +/- 3.7 mm, while narrowest retropalatal, lowest retropalatal airway, and narrowest retroglossal airway remained stable. Head posture showed flexure immediately after Surgery (4.8 +/- 5.9 degrees) and extension postsurgically (1.6 +/- 5.6 degrees).Conclusion: Maxillo-mandibular advancement with counter-clockwise rotation produces immediate increases in middle and lower oropharyngeal airway dimensions, which were constrained by changes in head posture but remain stable over the postsurgical period. The upper oropharyngeal airway space increased only on the longest follow-up. (C) 2006 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Purpose : the aim of this study was to evaluate the effect of nozzle angle and tip diameter on the cutting efficiency of an air abrasion system. Materials and Methods: Thirty-six extracted human third molars were air-abraded with the PrepStar microabrasion machine using a handpiece with either 80degrees or 45degrees nozzle angles with 0.38 or 0.48 nun tip orifice diameters. The following parameters were held constant: abrasive particle size (27 mum), air pressure (80 psi), distance (2 mm.) and duration (15 seconds). The cutting efficiency was compared using enamel, dentin and cementum substrates. Width and depth of the cutting patterns were analyzed and measured using scanning electron micrographs. Results: Statistical analysis using three-way ANOVA and Duncan's Multiple Range test revealed that the width of the cuts was significantly greater when the cavities were prepared using the 45degrees nozzle angle. Significantly deeper cavities were produced with the 80degrees nozzle angle. The tip orifice of the nozzle influenced the cutting efficiency in softer substrates, dentin and cementum. Precise removal of hard tissue is best accomplished using the 80degrees angle nozzle tips for all types of tooth surfaces, enamel, dentin and cementum.
Resumo:
Aim: To evaluate the effect of implant length (6 mm vs. 11 mm) on osseointegration (bone-toimplant contact) of implants installed into sockets immediately after tooth extraction.Material and methods: In six Labrador dogs, the pulp tissue of the mesial roots of P-3(3) was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemisectioned and the distal roots removed. Recipient sites were prepared in the distal alveolus and a 6 mm or an 11 mm long implant was installed at the test and control sites, respectively. Non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment.Results: No statistically significant differences were found between test and control sites both for hard and soft tissue parameters. The bone-to-implant contact evaluated at the apical region of the implants was similar as well. Although not statistically significant, the location of the top of the bony crest at the buccal aspect was more apical in relation to the implant shoulder at the test compared with the control sites (2.0 +/- 1.4 and 1.2 +/- 1.1 mm, respectively).Conclusions: Shorter implants (6 mm) present with equal osseointegration than do longer implants (11 mm).
Resumo:
AimTo evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model.Material and methodsIn the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm).ConclusionsThe use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process.To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
Aim: To evaluate the effect of mismatching abutments on implants with a wider platform on the peri-implant hard tissue remodeling and the soft tissue dimensions.Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, one tapered implant was installed on each side of the mandibular molar region with the implant shoulder placed at the level of the buccal alveolar bony crest. on the right side of the mandible, an abutment of reduced diameter in relation to the platform of the implant was used, creating a mismatch of 0.85 mm (test), whereas an abutment of the same diameter of the implant platform was affixed in the left side of the mandible (control). The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.Results: All implants were completely osseo-integrated. Bone levels were superior at the test than at the control sites. However, statistically significant differences were found only at the buccal and proximal aspects. The soft tissue vertical dimension was higher at the control compared with the test sites. However, statistically significant differences were demonstrated only at the buccal aspects.Conclusions: A mismatch of 0.85 mm between the implant and the abutment yielded more coronal levels of bone-to-implant contact and a reduced height of the peri-implant soft tissue (biologic width), especially at the buccal aspect, if the implant shoulder was placed flush with the level of the buccal alveolar bony crest.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on bone formation at buccal alveolar dehiscence defects. Material and Methods: In six Labrador dogs the pulp tissue of the mesial roots of 4P4 was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned and the distal roots removed. The implants were placed in contact with either the buccal (test site) or with the lingual (control site) bony wall of the extraction sockets. Healing abutments were affixed and triangular buccal bony dehiscence defects, about 2.7 mm deep and 3.5 mm wide, were then prepared. No regenerative procedures were done and a non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment. Results: After 4 months of healing, the bony crest and the coronal border of osseointegration at the test sites were located 1.71 ± 1.20 and 2.50 ± 1.21 mm apically to the implant shoulder, respectively. At the control sites, the corresponding values were 0.68 ± 0.63 and 1.69 ± 0.99 mm, respectively. The differences between test and control reached statistical significance (P < 0.05). Residual marginal bone defects were found both at the test and control sites. A statistically significant difference between test and control sites was only found at the lingual aspects (depth 2.09 ± 1.01 and 1.01 ± 0.48 mm, respectively). Similar heights of the buccal biological width were observed at both sites (about 5.1 mm). Conclusions: The placement of implants in a lingual position of the extraction sockets allowed a higher degree of bone formation at buccal alveolar dehiscence defects compared with a buccal positioning. © 2012 John Wiley & Sons A/S.
Resumo:
Objective: To evaluate the influence of the configuration of the marginal aspect of implants placed immediately into extraction sockets on peri-implant hard tissue adaptation. Material and methods: In 6 Labrador dogs, endodontic treatments of the mesial roots of 1M1 were performed and the distal roots were removed. 2P2 was extracted as well. Implants were immediately placed in the center of the distal alveoli. Cylindrical straight implants were installed in the right side of the mandible (Control), while, in the left side, implants with a reduced diameter in the coronal portion, yielding an indentation in the surface continuity (Test), were installed. Cover screws were affixed, and the flaps were sutured to allow non-submerged healing. After 4 months of healing, histological slides were obtained for assessments. Results: A buccal resorption of 1.58 ± 1.28 and 1.90 ± 1.93 mm at the control and of 0.26 ± 0.90 and 0.14 ± 0.66 mm at the test sites was observed at the premolar and molar regions, respectively. The buccal coronal level of osseointegration was located apically to the margin of the smooth/rough surface border by 2.40 ± 0.90 and 3.70 ± 0.87 mm at the control sites and 1.19 ± 0.45 and 2.16 ± 0.96 mm at the test sites at the premolar and molar sites, respectively. All differences yielded statistical significance. Conclusions: The use of implants with a reduced diameter in their coronal aspect may contribute to preservation of the buccal bony crest in a more coronal level compared with conventional implants. Thus, the study confirmed the efficacy of the platform switching concept. © 2013 John Wiley & Sons A/S.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG