988 resultados para Dental Enamel Proteins
Resumo:
The aim of the present study was to investigate the abrasive effect of CaCO3 and SiO2-based fluoride-free experimental toothpastes on eroded human permanent dental enamel and evaluate the effectiveness of waiting periods between acid exposure and tooth brushing. Twelve volunteers wore palatal appliances containing human enamel blocks for two periods of five days each. The appliances were immersed in a soft drink for five minutes four times a day (9:00 am, 11:00 am, 2:00 pm and 4:00 pm). On two occasions, two blocks were not submitted to additional treatment; two blocks were brushed (30 s) either with a CaCO3 or SiO2 toothpaste immediately after erosion and two blocks were brushed 1 h after erosion. Thus, the sample was divided into six groups: erosion alone (CaCO3 and SiO2 control); brushing with fluoride- free toothpaste (CaCO3 immediate and 1 h after erosion; SiO2 immediate and 1 h after erosion). Significant differences in wear depth were found between the enamel blocks in the CaCO3 immediate and 1 h after erosion groups and the blocks in the CaCO3 control group (p=0.001; p=0.022). No significant differences were found regarding the change in roughness and wear depth between blocks submitted to immediate abrasion and 1 h after erosion (CaCO3 and SiO2). The data revealed that surface roughness and wear depth is increased when erosion is combined with dental abrasion, regardless of the abrasive used. Waiting for 1 h to brush the eroded blocks offered no protective effect.
Resumo:
Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required. - See more at: https://www.dentalaegis.com/cced/2011/04/smile-restoration-through-use-of-enamel-microbrasion-associated-with-tooth-bleaching#sthash.N6jz2Bwk.dpuf
Resumo:
Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required.
Resumo:
Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.
Resumo:
Objective: The aim of this study was to investigate the effect of Nd:YAG and argon laser irradiations on enamel demineralization after two different models to induce artificial caries. Background data: It is believed that the use of the high-intensity laser on the dental structure can lead to a more acid-resistant surface. Materials and methods: Twenty-one extracted human third molars were sectioned into tooth quarters. The quarters were distributed in three groups: Group I (control), untreated; Group II, Nd:YAG laser (60 mJ, 15 pps, 47.77 J/cm(2), 30 sec); and Group III, argon laser (250mW, 12 J/cm(2), 48 sec). Tooth quarters from each group were subjected to two different demineralization models: cycle 1, a 14 day demineralization (pH 4.5; 6 h) and remineralization (pH 7.0; 18 h) solutions, 37 degrees C and cycle 2, 48 h in demineralization solution (pH 4.5). Samples were prepared in slices (60-100 mu m thick) to be evaluated under polarized light microscopy. Demineralization areas were measured (mm(2)) (n = 11). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Results: Means followed by different letters are significantly different: 0.25 A (control, cycle 48 h); 0.18 AB (control, cycle 14 days); 0.17 AB (Nd:YAG, cycle 14 days); 0.14 BC (argon, cycle 48 h); 0.09 BC (Nd:YAG, cycle 48 h), and 0.06 C (argon, cycle 14 days). Conclusions: The argon laser was more effective for caries preventive treatment than Nd: YAG laser, showing a smaller demineralization area in enamel.
Resumo:
This study evaluated the effect of titanium tetrafluoride (TiF4) formulations on enamel carious demineralization in situ. Thirteen subjects took part in this cross-over, split-mouth, double-blind study performed in three phases of 14 d each. In each subject, two sound and two predemineralized specimens of bovine enamel were worn intra-orally and plaque accumulation was allowed. One sound and one predemineralized specimen in each subject was treated once with sodium fluoride (NaF) varnish or solution (Treatment A); TiF4 varnish or solution (Treatment B); or placebo varnish or no treatment (Treatment C). The initially sound enamel specimens were exposed to severe cariogenic challenge (20% sucrose, eight times daily for 5 min each time), whereas the predemineralized specimens were not. Eleven subjects were able to finish all experimental phases. The enamel alterations were quantified by surface hardness and transversal microradiography. Demineralization of previously sound enamel was reduced by all test formulations except for the NaF solution, while both TiF4 formulations were as effective as NaF varnish. For the predemineralized specimens, enamel surface hardness was increased only by TiF4 formulations, while subsurface mineral remineralization could not be seen in any group. Within the experimental protocol, TiF4 was able to decrease enamel demineralization to a similar degree as NaF varnish under severe cariogenic challenges, while only TiF4 formulations remineralized the enamel surface.
Resumo:
Objectives: Considering the enamel chemical structure, especially carbonate band, which has a major role in the caries prevention, the objective of the present study was to assess the chemical alterations on the enamel irradiated with CO2 laser by means of FTIR spectroscopy and SEM analysis. Design: The enamel surfaces were analysed on a spectrometer for acquisition of the absorption spectrum relative to the chemical composition of the control sample. The irradiation was conducted with a 10.6-mu m CO2 laser (0.55 W, 660 W/cm(2)). The carbonate absorption band at 1600-1291 cm(-1) as well as the water absorption band at 3793-2652 cm(-1) was measured in each sample after the irradiation. The water band was measured again 24-h after the irradiation. The band area of each chemical compound was delimited, the background was subtracted, and the area under each band was integrated. Each area was normalized by the phosphate band (1190-702 cm(-1)). Results: There was a statistically significant decrease (p < 0.05) in the water content after irradiation (control: 0.184 +/- 0.04; irradiated: 0.078 +/- 0.026), which increased again after rehydration (0.145 +/- 0.038). The carbonate/phosphate ratio was measured initially (0.112 +/- 0.029) and its reduction after irradiation indicated the carbonate loss (0.088 +/- 0.014) (p < 0.05). Conclusion: The 10.6-mu m CO2 laser irradiation diminishes the carbonate and water contents in the enamel after irradiation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this study was to screen CO2 laser (10.6 mu m) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n = 20) with varying fluences from 0.1 to 0.9 J/cm(2), pulse durations from 80 to 400 mu s and repetition rates from 180 to 700 Hz. Non-lased samples (n = 30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 mu L/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n = 3). Data were statistically analysed by one-way ANOVA (p < 0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm(2) (200 mu s) at 450 Hz. Short-time reduction of calcium loss (<= 1.5 min) could be also achieved by irradiation with 0.7 J/cm(2) (300 mu s) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use.
Resumo:
This study evaluated the capacity of fluoride acidic dentifrices (pH 4.5) to promote enamel remineralization using a pH cycling model, comparing them with a standard dentifrice (1,100 µgF/g). Enamel blocks had their surface polished and surface hardness determined (SH). Next, they were submitted to subsurface enamel demineralization and to post-demineralization surface hardness analysis. The blocks were divided into 6 experimental groups (n=10): placebo (without F, pH 4.5, negative control), 275, 412, 550, 1,100 µgF/g and a standard dentifrice (positive control). The blocks were submitted to pH cycling for 6 days and treatment with dentifrice slurries twice a day. After pH cycling, surface and cross-sectional hardness were assessed to obtain the percentage of surface hardness recovery (%SHR) and the integrated loss of subsurface hardness (ΔKHN). The results showed that %SHR was similar among acidic dentifrices with 412, 550, 1,100 µgF/g and to the positive control (Tukey's test; p>0.05). For ΔKHN, the acidic dentifrice with 550 µg F/g showed a better performance when compared with the positive control. It can be concluded that acidic dentifrice 550 µgF/g had similar remineralization capacity to that of positive control.
Resumo:
Mammalian teeth are composed of hydroxyapatite crystals that are embedded in a rich extracellular matrix. This matrix is produced by only two cell types, the mesenchymal odontoblasts and the ectodermal ameloblasts. Ameloblasts secrete the enamel proteins amelogenin, ameloblastin, enamelin and amelotin. Odontoblasts secrete collagen type I and several calcium-binding phosphoproteins including dentin sialophosphoprotein, dentin matrix protein, bone sialoprotein and osteopontin. The latter four proteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) because they display similar gene structures and because they contain an RGD tripeptide sequence that binds to integrin receptors and thus mediates cell adhesion. We have prepared all the other tooth-specific proteins in recombinant form and examined whether they might also promote cell adhesion similar to the SIBLINGs. We found that only ameloblastin consistently mediated adhesion of osteoblastic and fibroblastic cells to plastic or titanium surfaces. The activity was dependent on the intact three-dimensional structure of ameloblastin and required de novo protein synthesis of the adhering cells. By deletion analysis and in vitro mutagenesis, the active site could be narrowed down to a sequence of 13 amino acid residues (VPIMDFADPQFPT) derived from exon 7 of the rat ameloblastin gene or exons 7-9 of the human gene. Kinetic studies and RNA interference experiments further demonstrated that this sequence does not directly bind to a cell surface receptor but that it interacts with cellular fibronectin, which in turn binds to integrin receptors. The identification of a fibronectin-binding domain in ameloblastin might permit interesting applications for dental implantology. Implants could be coated with peptides containing the active sequence, which in turn would recruit fibronectin from the patient's blood. The recruited fibronectin should then promote cell adhesion on the implant surface, thereby accelerating osseointegration of the implant.
Resumo:
Dentition is a vital element of human and animal function, yet there is little fundamental knowledge about how tooth enamel endures under stringent oral conditions. This paper describes a novel approach to the issue. Model glass dome specimens fabricated from glass and backfilled with polymer resin are used as representative of the basic enamel/dentine shell structure. Contact loading is used to deform the dome structures to failure, in simulation of occlusal loading with opposing dentition or food bolus. To investigate the role of enamel microstructure, additional contact tests are conducted on twophase materials that capture the essence of the mineralizedrod/organicsheath structure of dental enamel. These materials include dental glassceramics and biomimicked composites fabricated from glass fibers infiltrated with epoxy. The tests indicate how enamel is likely to deform and fracture along easy sliding and fracture paths within the binding phase between the rods. Analytical relations describing the critical loads for each damage mode are presented in terms of material properties (hardness, modulus, toughness) and tooth geometry variables (enamel thickness, cusp radius). Implications in dentistry and evolutionary biology are discussed.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Aim: To evaluate the effect of different in-office bleaching agents on the permeability, roughness and surface microhardness of human enamel. Methods: For evaluation of roughness and microhardness, 40 hemi-faces of 20 premolars were subjected to initial roughness (Ra parameter) and microhardness (VHN) measurements. Thirty-two premolar’s crowns were used for permeability test. Then, all specimens were randomly divided into four groups: C - without bleaching (control), HP35 - bleaching with 35% hydrogen peroxide (HP), HPF38 - 38% HP+fluoride, HPC35 - 35% HP+calcium. Final roughness (FR) and microhardness (FM) measurements were evaluated. For permeability, the 32 crowns were immersed in 1% sodium hypochlorite (20 min) and silver nitrate solutions (2 h) and subjected to developing solution under fluorescent light (16 h). Three sections from the crowns were analyzed in light microscope (100x) to evaluate the scores of permeability: Score 0 - no tracer agent penetration; Score 1 - less than half the thickness of enamel penetration; Score 2 - tracer agent reaching half the enamel thickness; Score 3 - entire enamel depth penetration, without reaching dentin and Score 4 - tracer agent reaching dentin. For roughness and microhardness evaluation were used one-way ANOVA and Dunnet post-test for independent samples, and t test for paired samples. For permeability, the data were analyzed by Kruskal Wallis and Dunn tests. Results: A significantly higher permeability and surface roughness were observed in groups HP35, HPF38 and HPC35 compared to the C group, as well as decreased microhardness (p<0.05). Conclusions: All bleaching agents increased permeability and surface roughness, and decreased microhardness of human enamel; thus, the addition of fluoride or calcium was not beneficial.