228 resultados para Demolition


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The management of construction waste is important today. The scarcity in the availability of aggregate for the production of concrete is one of the important problems facing by the construction industry. Appropriate use of the construction waste is a solution to the fast degradation of virgin raw materials in the construction industry. This paper enlightens the importance of reduce, reuse and recycle (3R) concept for managing the construction waste in India

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of the drive towards waste-poor world and reserving the non-renewable materials, recycling the construction and demolition materials become very essential. Now reuse of the recycled concrete aggregate more than 4 mm in producing new concrete is allowed but with natural sand a fine aggregate while. While the sand portion that represent about 30\% to 60\% of the crushed demolition materials is disposed off. To perform this research, recycled concrete sand was produced in the laboratory while nine recycled sands produced from construction and demolitions materials and two sands from natural crushed limestone were delivered from three plants. Ten concrete mix designs representing the concrete exposition classes XC1, XC2, XF3 and XF4 according to European standard EN 206 were produced with partial and full replacement of natural sand by the different recycled sands. Bituminous mixtures achieving the requirements of base courses according to Germany standards and both base and binder courses according to Egyptian standards were produced with the recycled sands as a substitution to the natural sands. The mechanical properties and durability of concrete produced with the different recycled sands were investigated and analyzed. Also the volumetric analysis and Marshall test were performed hot bituminous mixtures produced with the recycled sands. According to the effect of replacement the natural sand by the different recycled sands on the concrete compressive strength and durability, the recycled sands were classified into three groups. The maximum allowable recycled sand that can be used in the different concrete exposition class was determined for each group. For the asphalt concrete mixes all the investigated recycled sands can be used in mixes for base and binder courses up to 21\% of the total aggregate mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta investigación analiza la construcción del límite sur de la zona patrimonial de Bogotá de los años 80, a partir de dos procesos simultáneos: la demolición de un sector del barrio Santa Bárbara y la patrimonialización de La Candelaria. A pesar de que estos dos sectores de la ciudad hicieron parte de la ciudad antigua y compartieron un origen común, solo La Candelaria logró hacer parte de la zona considerada de valor histórico. Por lo tanto, este proyecto de grado se interesa, principalmente, por conocer por qué el barrio Santa Bárbara fue excluido del relato histórico de la ciudad, a partir del estudio de la discusión sobre su valor histórico que dio paso al uso público del pasado y a una “lucha por la memoria”, en palabras de Elizabeth Jelin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Estado español tiene más de 100.000 construcciones ilegales. En la actualidad, la ejecución de las sentencias en materia urbanística no es eficaz. Existe, por tanto, una situación de inejecución de las sentencias urbanísticas. Un ciudadano puede construir una casa al amparo de una licencia. Sin embargo, a veces, esta licencia es ilegal porque infringe el plan urbanístico aplicable y incluso la propia ley de urbanismo. La consecuencia jurídica de la ilegal es la obligatoriedad del derribo de lo ilegalmente construido. Lo mismo sucede ante la declaración de ilegalidad de un plan urbanístico. En este caso, el juez o tribunal estimará la ilegalidad del plan y el fallo deberá ser ejecutado. La solución no es un fácil porque la demolición o derribo de la construcción ilegal trae consigo el pago de una indemnización a los propietarios que han edificado al amparo de una licencia ilegal.El derecho a la ejecución de sentencias es prescrito por el artículo 24 de la Constitución española. Este artículo 24 garantiza el derecho de todos ciudadanos a una tutela judicial efectiva. El Tribunal Constitucional español en sus sentencias número 67/1984 y 28/1989, reconocieron que el derecho a la ejecución de las resoluciones judiciales deriva del propio derecho a la tutela judicial efectiva. La justicia administrativa está regulada por la Ley 29/1998, del 13 de julio, reguladora de la jurisdicción contencioso-administrativa. En su artículo 103.1 de la Ley 29/1998, establece que los jueces y los tribunales de la jurisdicción administrativa son los competentes para hacer ejecutar las sentencias. Por otro lado, el artículo 117.3 de la Constitución Española otorga la competencia en exclusiva a los jueces y tribunales para hacer ejecutar las sentencias, como manifestación del principio de división de poderes.En último lugar, los valores que la legislación urbanística española incorpora, tales como, el desarrollo sostenible, urbanismo sostenible y la cohesión social, quedan inaplicados si las sentencias urbanísticas no se ejecutan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global temperatures are expected to rise by between 1.1 and 6.4oC this century, depending, to a large extent, on the amount of carbon we emit to the atmosphere from now onwards. This warming is expected to have very negative effects on many peoples and ecosystems and, therefore, minimising our carbon emissions is a priority. Buildings are estimated to be responsible for around 50% of carbon emissions in the UK. Potential reductions involve both operational emissions, produced during use, and embodied emissions, produced during manufacture of materials and components, and during construction, refurbishments and demolition. To date the major effort has focused on reducing the, apparently, larger operational element, which is more readily quantifiable and reduction measures are relatively straightforward to identify and implement. Various studies have compared the magnitude of embodied and operational emissions, but have shown considerable variation in the relative values. This illustrates the difficulties in quantifying embodied, as it requires a detailed knowledge of the processes involved in the different life cycle phases, and requires the use of consistent system boundaries. However, other studies have established the interaction between operational and embodied, which demonstrates the importance of considering both elements together in order to maximise potential reductions. This is borne out in statements from both the Intergovernmental Panel on Climate Change and The Low Carbon Construction Innovation and Growth Team of the UK Government. In terms of meeting the 2020 and 2050 timeframes for carbon reductions it appears to be equally, if not more, important to consider early embodied carbon reductions, rather than just future operational reductions. Future decarbonisation of energy supply and more efficient lighting and M&E equipment installed in future refits is likely to significantly reduce operational emissions, lending further weight to this argument. A method of discounting to evaluate the present value of future carbon emissions would allow more realistic comparisons to be made on the relative importance of the embodied and operational elements. This paper describes the results of case studies on carbon emissions over the whole lifecycle of three buildings in the UK, compares four available software packages for determining embodied carbon and suggests a method of carbon discounting to obtain present values for future emissions. These form the initial stages of a research project aimed at producing information on embodied carbon for different types of building, components and forms of construction, in a simplified form, which can be readily used by building designers in optimising building design in terms of minimising overall carbon emissions. Keywords: Embodied carbon; carbon emission; building; operational carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UK has adopted legally binding carbon reduction targets of 34% by 2020 and 80% by 2050 (measured against the 1990 baseline). Buildings are estimated to be responsible for more than 50% of greenhouse gas (GHG) emissions in the UK. These consist of both operational, produced during use, and embodied, produced during manufacture of materials and components, and during construction, refurbishments and demolition. A brief assessment suggests that it is unlikely that UK emission reduction targets can be met without substantial reductions in both Oc and Ec. Oc occurs over the lifetime of a building whereas the bulk of Ec occurs at the start of a building’s life. A time value for emissions could influence the decision making process when it comes to comparing mitigation measures which have benefits that occur at different times. An example might be the choice between building construction using low Ec construction materials versus building construction using high Ec construction materials but with lower Oc, although the use of high Ec materials does not necessarily imply a lower Oc. Particular time related issues examined here are: the urgency of the need to achieve large emissions reductions during the next 10 to 20 years; the earlier effective action is taken, the less costly it will be; future reduction in carbon intensity of energy supply; the carbon cycle and relationship between the release of GHG’s and their subsequent concentrations in the atmosphere. An equation is proposed, which weights emissions according to when they occur during the building life cycle, and which effectively increases Ec as a proportion of the total, suggesting that reducing Ec is likely to be more beneficial, in terms of climate change, for most new buildings. Thus, giving higher priority to Ec reductions is likely to result in a bigger positive impact on climate change and mitigation costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Philosophy has repeatedly denied cinema in order to grant it artistic status. Adorno, for example, defined an ‘uncinematic’ element in the negation of movement in modern cinema, ‘which constitutes its artistic character’. Similarly, Lyotard defended an ‘acinema’, which rather than selecting and excluding movements through editing, accepts what is ‘fortuitous, dirty, confused, unclear, poorly framed, overexposed’. In his Handbook of Inaesthetics, Badiou embraces a similar idea, by describing cinema as an ‘impure circulation’ that incorporates the other arts. Resonating with Bazin and his defence of ‘impure cinema’, that is, of cinema’s interbreeding with other arts, Badiou seems to agree with him also in identifying the uncinematic as the location of the Real. This article will investigate the particular impurities of cinema that drive it beyond the specificities of the medium and into the realm of the other arts and the reality of life itself. Privileged examples will be drawn from various moments in film history and geography, starting with the analysis of two films by Jafar Panahi: This Is Not a Film (In film nist, 2011), whose anti-cinema stance in announced in its own title; and The Mirror (Aineh, 1997), another relentless exercise in self-negation. It goes on to examine Kenji Mizoguchi’s deconstruction of cinematic acting in his exploration of the geidomono genre (films about theatre actors) in The Story of the Last Chrysanthemums (Zangigku monogatari, 1939), and culminates in the conjuring of the physical experience of death through the systematic demolition of film genres in The Act of Killing (Joshua Oppenheimer et al., 2012).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The “traveling imagination,” is of paramount importance to both western and postcolonial travelers. Since both groups create “travel imaginations” by extensive reading, the nature of the books that inform them must directly affect their travels. A westerner, for example, who reads only colonial-era accounts has the “travel imagination” of a different generation. If all perspectives were represented equally in libraries, the “travel imagination” of a given person would be entirely his/her own. But usually the “traveler’s imagination” is biased by prevailing opinion. Libraries are not democracies, and sometimes extensive reading only indoctrinates the reader with the biases of the canon. Perhaps the following generalization will be helpful. Westerners are able to create “traveling imaginations,” based on the books they trust. But postcolonials, who have reason to be suspicious of what they read, have complicated “traveling imaginations.” Sometimes postcolonial travelers base their “traveling imaginations” on what they read, and sometimes, in opposition to what they read. The books discussed in this thesis, In Patagonia, The Cruise of the Shark, The Happy Isles of Oceania, A Passage to England and The Enigma of Arrival, were first published in, 1977, 1939, 1992, 1971 and 1987, respectively, in what Ali Behdad calls the “age of colonial dissolution.” Perhaps it would be more accurate to say these books are set in the “age of colonial demolition.” For the most part, the empires in these texts are in ruins, or at least in the process of being dismantled. In fact, two of the authors, Nirad Chaudhuri and V.S. Naipaul are canonical post-colonial thinkers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks