242 resultados para Delphic oracle
Resumo:
Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.
Resumo:
Boldyreva, Palacio and Warinschi introduced a multiple forking game as an extension of general forking. The notion of (multiple) forking is a useful abstraction from the actual simulation of cryptographic scheme to the adversary in a security reduction, and is achieved through the intermediary of a so-called wrapper algorithm. Multiple forking has turned out to be a useful tool in the security argument of several cryptographic protocols. However, a reduction employing multiple forking incurs a significant degradation of , where denotes the upper bound on the underlying random oracle calls and , the number of forkings. In this work we take a closer look at the reasons for the degradation with a tighter security bound in mind. We nail down the exact set of conditions for success in the multiple forking game. A careful analysis of the cryptographic schemes and corresponding security reduction employing multiple forking leads to the formulation of `dependence' and `independence' conditions pertaining to the output of the wrapper in different rounds. Based on the (in)dependence conditions we propose a general framework of multiple forking and a General Multiple Forking Lemma. Leveraging (in)dependence to the full allows us to improve the degradation factor in the multiple forking game by a factor of . By implication, the cost of a single forking involving two random oracles (augmented forking) matches that involving a single random oracle (elementary forking). Finally, we study the effect of these observations on the concrete security of existing schemes employing multiple forking. We conclude that by careful design of the protocol (and the wrapper in the security reduction) it is possible to harness our observations to the full extent.
Resumo:
The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.
Resumo:
We address the problem of denoising images corrupted by multiplicative noise. The noise is assumed to follow a Gamma distribution. Compared with additive noise distortion, the effect of multiplicative noise on the visual quality of images is quite severe. We consider the mean-square error (MSE) cost function and derive an expression for an unbiased estimate of the MSE. The resulting multiplicative noise unbiased risk estimator is referred to as MURE. The denoising operation is performed in the wavelet domain by considering the image-domain MURE. The parameters of the denoising function (typically, a shrinkage of wavelet coefficients) are optimized for by minimizing MURE. We show that MURE is accurate and close to the oracle MSE. This makes MURE-based image denoising reliable and on par with oracle-MSE-based estimates. Analogous to the other popular risk estimation approaches developed for additive, Poisson, and chi-squared noise degradations, the proposed approach does not assume any prior on the underlying noise-free image. We report denoising results for various noise levels and show that the quality of denoising obtained is on par with the oracle result and better than that obtained using some state-of-the-art denoisers.
Resumo:
This paper explores how audio chord estimation could improve if information about chord boundaries or beat onsets is revealed by an oracle. Chord estimation at the frame level is compared with three simulations, each using an oracle of increasing powers. The beat and chord segments revealed by an oracle are used to compute a chord ranking at the segment level, and to compute the cumulative probability of finding the correct chord among the top ranked chords. Oracle results on two different audio datasets demonstrate the substantial potential of segment versus frame approaches for chord audio estimation. This paper also provides a comparison of the oracle results on the Beatles dataset, the standard dataset in this area, with the new Billboard Hot 100 chord dataset.
Resumo:
Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.)
Resumo:
How powerful are Quantum Computers? Despite the prevailing belief that Quantum Computers are more powerful than their classical counterparts, this remains a conjecture backed by little formal evidence. Shor's famous factoring algorithm [Shor97] gives an example of a problem that can be solved efficiently on a quantum computer with no known efficient classical algorithm. Factoring, however, is unlikely to be NP-Hard, meaning that few unexpected formal consequences would arise, should such a classical algorithm be discovered. Could it then be the case that any quantum algorithm can be simulated efficiently classically? Likewise, could it be the case that Quantum Computers can quickly solve problems much harder than factoring? If so, where does this power come from, and what classical computational resources do we need to solve the hardest problems for which there exist efficient quantum algorithms?
We make progress toward understanding these questions through studying the relationship between classical nondeterminism and quantum computing. In particular, is there a problem that can be solved efficiently on a Quantum Computer that cannot be efficiently solved using nondeterminism? In this thesis we address this problem from the perspective of sampling problems. Namely, we give evidence that approximately sampling the Quantum Fourier Transform of an efficiently computable function, while easy quantumly, is hard for any classical machine in the Polynomial Time Hierarchy. In particular, we prove the existence of a class of distributions that can be sampled efficiently by a Quantum Computer, that likely cannot be approximately sampled in randomized polynomial time with an oracle for the Polynomial Time Hierarchy.
Our work complements and generalizes the evidence given in Aaronson and Arkhipov's work [AA2013] where a different distribution with the same computational properties was given. Our result is more general than theirs, but requires a more powerful quantum sampler.
Resumo:
A tese se insere nos estudos sobre o gótico literário. Seu objetivo principal é mostrar o lar como lugar crucial para o desenvolvimento das temáticas caras ao gênero, destacando o corpo feminino como pivô. Na primeira parte, foram analisados estudos teóricos sobre o romance inglês, apontando para uma possível mudança na maneira como o gótico vem sendo tratado. Na segunda parte, obras ficcionais importantes para a discussão do lar e do corpo feminino dentro da tradição gótica foram analisadas, promovendo a articulação de tais obras com as diretrizes teóricas pertinentes. Finalmente, a terceira e última parte terá os romances Ciranda de Pedra, Daughters of the House e Lady Oracle como foco, a fim de apontar o modo como a narrativa gótica contemporânea assimilou as questões tratadas anteriormente
Resumo:
La primera idea de la realización de este proyecto, fue concebida por la necesidad de tener un sistema por el cual se pudieran cambiar datos de una aplicación, en un sistema móvil, a través de una página web. Sin embargo al conocer la potencia que tiene RDF para ser muy escalable terminó siendo un sistema de gestión de contenido general en RDF. Este sistema de gestión se ha realizado para ser lo más simple posible para un usuario, de tal manera que con solo 2 click en la página web y rellenando un formulario simple, pudiera tener una base de datos sin muchos conocimientos sobre la gestión de las mismas. Aunque claramente no es un sistema potente como si fuera una base de datos en Oracle, por citar un ejemplo, sirve para poder agregar, modificar y eliminar datos con sencillez. Así este sistema de gestión da una posibilidad muy sencilla de realizar tus propias bases de datos. Además aunque tiene un motor SQL para la gestión interna de almacenamiento, la salida de los datos es en RDF/XML con lo que podría ser compatible con un sistema más amplio como Oracle Database Semantic Technologies. Este CMS también tendrá un sistema de seguridad basado en usuario y contraseña. Para que la edición del contenido sea accesible solo a usuarios con acceso, mientras que la exportación de los datos será pública, y podrá ser accesible por cualquier usuario mediante una URI.
Resumo:
We propose an algorithm to perform multitask learning where each task has potentially distinct label sets and label correspondences are not readily available. This is in contrast with existing methods which either assume that the label sets shared by different tasks are the same or that there exists a label mapping oracle. Our method directly maximizes the mutual information among the labels, and we show that the resulting objective function can be efficiently optimized using existing algorithms. Our proposed approach has a direct application for data integration with different label spaces, such as integrating Yahoo! and DMOZ web directories.
Resumo:
The RSA-based Password-Authenticated Key Exchange (PAKE) protocols have been proposed to realize both mutual authentication and generation of secure session keys where a client is sharing his/her password only with a server and the latter should generate its RSA public/private key pair (e, n), (d, n) every time due to the lack of PKI (Public-Key Infrastructures). One of the ways to avoid a special kind of off-line (so called e-residue) attacks in the RSA-based PAKE protocols is to deploy a challenge/response method by which a client verifies the relative primality of e and φ(n) interactively with a server. However, this kind of RSA-based PAKE protocols did not give any proof of the underlying challenge/response method and therefore could not specify the exact complexity of their protocols since there exists another security parameter, needed in the challenge/response method. In this paper, we first present an RSA-based PAKE (RSA-PAKE) protocol that can deploy two different challenge/response methods (denoted by Challenge/Response Method1 and Challenge/Response Method2). The main contributions of this work include: (1) Based on the number theory, we prove that the Challenge/Response Method1 and the Challenge/Response Method2 are secure against e-residue attacks for any odd prime e; (2) With the security parameter for the on-line attacks, we show that the RSA-PAKE protocol is provably secure in the random oracle model where all of the off-line attacks are not more efficient than on-line dictionary attacks; and (3) By considering the Hamming weight of e and its complexity in the RSA-PAKE protocol, we search for primes to be recommended for a practical use. We also compare the RSA-PAKE protocol with the previous ones mainly in terms of computation and communication complexities.
Resumo:
提出了一个组件级的细粒度属性证明方案,用于向远程依赖方证明用户平台满足某种安全属性.与现有的远程证明方案相比,组件属性远程证明具有一定的语义和属性表述性等优势.该方案不但证明粒度细和扩展性强,而且属性证书的颁发、验证和撤销实现简单;本方案以组件承诺的方法保证属性证明的真实性,采用零知识证明实现平台组件的隐私性.基于强RSA假设,在Random Oracle模型下可被证明是安全的.实现的原型系统实验结果表明,组件属性证明是一种灵活、实用、高效的证明,对系统性能没有影响.
Resumo:
该文基于可验证秘密共享思想和对Zheng的签密方案的必要修改,首次构造了一种不需要可信中心的门限签密方案.它能同时达到门限签名和加密的双重目的,实现代价仅和门限签名相当,并具有非否认性质.该文对当前一些分布式密钥分配协议做了分析,并基于Naor的基本思想,重点利用签密方案设计了协议SC—DKDS.与其它协议相比,该协议在减低实现成本等方面更为有效,因为它不需要认证信道、秘密信道及复杂的零知识证明等.该文还在RO(Random Oracle,随机预言)模型中给出了以上协议的安全性证明.