277 resultados para Delamination


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fracture toughness and fatigue fracture behaviour of carbon-fiber-reinforced modified bismaleimide (BMI) composites have been studied. These composites were found to have higher fracture toughnes, better damage tolerance and longer fatigue life than carbon-fiber composites with epoxy matrices. Delamination is the major mode of failure in fatigue and it is controlled by the properties of the matrix and interface. The improved performance is dire to the presence of thermoplastic particles in the modified BMI matrix which gives rise to enhanced fiber/matrix adhesion and more extensive plastic deformation. The fatigue behaviour also depends on the stacking sequence, with the multidirectional [45/90/-45/0] fiber-reinforced modified BMI composite having a lower crack propagation rate and longer fatigue life than the unidirectional laminate. This arises because of the constraint on the damage processes due to the different fiber orientation in the plies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

《固体力学进展及应用:庆贺李敏华院士90华诞文集》收录了近代固体力学基础理论及其应用领域的重要科技成果和最新进展。作者是在同体力学领域工作多年的资深研究员,他们来自各行各业,有丰富的科研与丁作经验。他们提供的论文在相当程度上反映当前同体力学的发展现状与成就,并能看出发展趋势,对未来研究的课题选择有参考价值。《固体力学进展及应用:庆贺李敏华院士90华诞文集》还收集了李敏华院士的珍贵照片和纪念李敏华院士90华诞的庆贺和回忆文章,具有重要的史料价值。

目录

学术论文
星际超高速公路网
塑性波、动态屈服准则和动态塑性本构关系
LURR's twenty years and its perspective
铜晶体循环形变的晶体学取向特征
损伤、界面与材料强韧化
散斑方法用于疲劳问题研究
微薄梁三点弯曲尺度效应的理论分析
三峡坝区电力设施及水工建筑物在工程爆破引发振动激励下的动力安全评估
基尼系数的估算方法
颗粒增强复合材料的残余热应力分析和增韧效应
先进复合材料及其在航空航天中应用
我国船舶水弹性力学研究的部分进展
车桥耦合系统随机振动的虚拟激励分析
SHPB系统高温实验自动组装技术
Research on performance indices ofvibration isolation system
Dynamic testing of materials with the rotating disk indirect bar-bar tensile impact apparatus
先进复合材料层合板壳的自由振动分析
任意线法
阿基米德原型桥的动力响应
Criteria for the delamination of thermal barrier coatings:with application to thermal gradients
复合材料飞轮储能系统发展现状
The component assembling model and elasto-plastic-damage deformation of materials
Acceleration sensitivity analysis offrequency stability for micro-cavity oscillators
Prediction of muscle forces in human musculoskeletal systemapplication of classic mechanics methods in biomechanics
复合材料设计的原理与应用
A criterion for the avoidance of edge cracking in layered systems
基于滑移构元的多晶金属弹塑性本构模型
浅谈中国古建中斗拱的力学问题
A universal relationship between indentation hardness and flow stress
滑移构元模型和塑性屈服面的演化
加卸载响应比(LURR)与损伤变量(D)关系的研究
永乐大钟一悬挂结构动态响应分析
基于格构模型的混凝土动静态拉伸破坏试验数值模拟
边坡稳定性分析极限平衡法的简化条件
构元组集弹性损伤模型对准脆性材料损伤至断裂各向异性特征的分析
庆贺与回忆
庆贺与回忆
李先生引领我走上力学人生
李敏华先生的爱国情结
向李敏华先生学习
师恩难忘——恭贺李敏华先生九十大寿
跟随李敏华先生工作的日子

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the thermally induced cracking behavior of a segmented coating has been investigated. The geometry under consideration is a hollow cylinder with a segmented coating deposited onto its outer surface. The segmentation cracks are modeled as a periodic array of axial edge cracks. The finite element method is utilized to obtain the solution of the multiple crack problem and the Thermal Stress Intensity Factors (TSIFs) are calculated. Based on dimensional analysis, the main parameters affecting TSIFs are identified. It has been found that the TSIF is a monotonically increasing function of segmentation crack spacing. This result confirms that a segmented coating exhibits much higher thermal shock resistance than an intact counterpart, if only the segmentation crack spacing is narrow enough. The dependence of TSIF on some other parameters, such as normalized time, segmentation crack depth, convection severity as well as material constants, has also been discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central theme of this thesis is the use of imidazolium-based organic structure directing agents (OSDAs) in microporous materials synthesis. Imidazoliums are advantageous OSDAs as they are relatively inexpensive and simple to prepare, show robust stability under microporous material synthesis conditions, have led to a wide range of products, and have many permutations in structure that can be explored. The work I present involves the use of mono-, di-, and triquaternary imidazolium-based OSDAs in a wide variety of microporous material syntheses. Much of this work was motivated by successful computational predictions (Chapter 2) that led me to continue to explore these types of OSDAs. Some of the important discoveries with these OSDAs include the following: 1) Experimental evaluation and confirmation of a computational method that predicted a new OSDA for pure-silica STW, a desired framework containing helical pores that was previously very difficult to synthesize. 2) Discovery of a number of new imidazolium OSDAs to synthesize zeolite RTH, a zeolite desired for both the methanol-to-olefins reaction as well as NOX reduction in exhaust gases. This discovery enables the use of RTH for many additional investigations as the previous OSDA used to make this framework was difficult to synthesize, such that no large scale preparations would be practical. 3) The synthesis of pure-silica RTH by topotactic condensation from a layered precursor (denoted CIT-10), that can also be pillared to make a new framework material with an expanded pore system, denoted CIT-11, that can be calcined to form a new microporous material, denoted CIT-12. CIT-10 is also interesting since it is the first layered material to contain 8 membered rings through the layers, making it potentially useful in separations if delamination methods can be developed. 4) The synthesis of a new microporous material, denoted CIT-7 (framework code CSV) that contains a 2-dimensional system of 8 and 10 membered rings with a large cage at channel intersections. This material is especially important since it can be synthesized as a pure-silica framework under low-water, fluoride-mediated synthesis conditions, and as an aluminosilicate material under hydroxide mediated conditions. 5) The synthesis of high-silica heulandite (HEU) by topotactic condensation as well as direct synthesis, demonstrating new, more hydrothermally stable compositions of a previously known framework. 6) The synthesis of germanosilicate and aluminophosphate LTA using a triquaternary OSDA. All of these materials show the diverse range of products that can be formed from OSDAs that can be prepared by straightforward syntheses and have made many of these materials accessible for the first time under facile zeolite synthesis conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064 nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064 nm with a 12 ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As células tronco são caracterizadas pela sua capacidade de se diferenciar em várias linhagens de células e exibir um pontente efeito parácrino. O objetivo deste trabalho foi avaliar o efeito da terapia com células da medula óssea (BMCs) na glicose sanguínea, no metabolismo lipídico e remodelamento da parede da aorta em um modelo experimental para aterosclerose. Camundongos C57BL/6 foram alimentados com uma dieta controle (grupo CO) ou uma dieta aterogênica (grupo AT - 60% gordura). Após 16 semanas, o grupo AT foi dividido em quatro sub grupos: grupo AT 14 dias e o grupo AT 21 dias receberam uma injeção de PBS na veia caudal e mortos 14 e 21 dias após respectivamente; grupo AT-BMC 14 dias e AT-BMC 21 dias que receberam uma injeção com BMCs na veia caudal e mortos 14 e 21 dias após, respectivamente. O grupo CO foi sacrificado juntamente com outros grupos. O transplante BMCs reduziu os niveis de glicose, triglicerídeos e colesterol total no sangue. Não houve diferença significativa em relação à massa corporal entre os grupos transplantados e não transplantados, sendo todos diferentes do grupo CO. Não houve diferença significativa na curva glicemica entre os grupos AT 14 dias, AT-BMC 14 dias e AT 21 dias e estes diferentes do grupo CO e do grupo AT-BMC 21 dias. O Qa (1/mm2) foi quantitativamente reduzido no grupo AT 14 dias e AT 21 dias quando comparado ao grupo CO. Este Qa se mostrou elevado no grupo AT-BMC 21 dias quando comparado a todos os grupos. O aumento da expessura da parede da aorta foi observado em todos os grupos aterogênicos, entretanto o aumento da espessura foi significativamente menor no grupo AT-BMC 21 dias em relação ao grupo AT 14 dias e AT 21 dias. A percentagem de fibras elásticas se apresentou significativamente maior no grupo AT 21 dias quando comparado ao CO e AT-BMC 21 dias. Não houve diferença significativa entre o grupo CO e AT-BMC 21 dias. Vacúolos na túnica média, delaminação e o adelgaçamento das lamelas elásticas foram observados nos grupos AT-14 dias e AT-21 dias. O menor número destes foi visualizado no grupo AT-BMC 14 dias e AT-BMC 21 dias. A imunomarcação para alfa actina de músculo liso (α-SMA) e fator de crescimento vascular e endotelial (VEGF) mostrou menor marcação em grupos transplantados com BMCs. A marcação para antígeno nuclear de proliferação celular (PCNA) mostrou-se mais expressiva no grupo AT-BMC 21 dias grupo. Marcação para CD105, CD133 e CD68 foi observada nos grupos AT 14 dias e AT 21 dias. Estas marcações não foram observadas nos grupos AT-BMC 14 dias e AT-BMC 21 dias. Nas eletromicrografias observamos o remodelamento benéfico no grupo AT-BMC14 dias e AT-BMC 21 dias, com a organização estrutural similar ao grupo CO. Vesículas de pinocitose, projeção da célula muscular lisa e a delaminação da lamina elástica interna são observados nos grupos AT 14 dias e AT 21 dias. Célula endotelial preservada, com lamina elástica interna de contorno regular e contínua é observada no grupo CO e nos grupos AT-BMC 14 dias e AT-BMC 21 dias. Como conclusão, os nossos resultados reforçam o conceito de que, em um modelo aterosclerótico utilizando camundongos e dieta aterogênica, a injeção de BMCs melhora os níveis de glicose, metabolismo lipídico e ocasiona um remodelamento benéfico na parede da aorta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic response of end-clamped monolithic beams and sandwich beams of equal areal mass have been measured by loading the beams at mid-span with metal foam projectiles to simulate localised blast loading. The sandwich beams were made from carbon fibre laminate and comprised identical face sheets and a square-honeycomb core. The transient deflection of the beams was determined as a function of projectile momentum, and the measured response was compared with finite element simulations based upon a damage mechanics approach. A range of failure modes were observed in the sandwich beams including core fracture, plug-type shear failure of the core, debonding of the face sheets from the core and tensile tearing of the face sheets at the supports. In contrast, the monolithic beams failed by a combination of delamination of the plies and tensile failure at the supports. The finite element simulations of the beam response were accurate provided the carbon fibre properties were endowed with rate sensitivity of damage growth. The relative performance of monolithic and sandwich beams were quantified by the maximum transverse deflection at mid-span for a given projectile momentum. It was found that the sandwich beams outperformed both monolithic composite beams and steel sandwich beams with a square-honeycomb core. However, the composite beams failed catastrophically at a lower projectile impulse than the steel beams due to the lower ductility of the composite material. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steady-state tunneling and plane-strain delamination of an H-shape crack are examined for elastic, isotropic multi layers. Both tunneling and delamination are analysed by employing linear elastic fracture mechanics within a 2D finite element framework. Failure maps are produced to reveal the sensitivity of cracking path to the relative toughness of layer and interface, and to the stiffness mismatch of layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the effect of thermal cycling on the performance of concrete beams retrofitted with CARDIFRC, a new class of high performance fiber-reinforced cement-based material that is compatible with concrete. Twenty four beams were subjected to 24 h thermal cycles between 25 and 90°C. One third of the beams were reinforced either in flexure only or in flexure and shear with conventional steel reinforcement and used as control specimens. The remaining sixteen beams were retrofitted with CARDIFRC strips to provide external flexural and/or shear strengthening. All beams were exposed to a varied number of 24 h thermal cycles ranging from 0 to 90 and were tested in four-point bending at room temperature. The tests indicated that the retrofitted members were stronger and stiffer than control beams, and more importantly, that their failure initiated in flexure without any signs of interfacial delamination cracking. The results of these tests are presented and compared to analytical predictions. The predictions show good correlation with the experimental results. © 2010 ASCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline emeraldine base/epoxy resin (EB/ER) coating was investigated for corrosion protection of mild steel coupled with copper in 3.5% NaCl solution. EB/ER coating with 5-10 wt% EB had long-term corrosion resistance on both uncoupled steel and copper due to the passivation effect of EB on the metal surfaces. During the 150 immersion days, the impedance at 0.1 Hz for the coating increased in the first 1-40 days and subsequently remained constant above 10(9) Omega cm(2), whereas that for pure ER coating fell below 10(6) Omega cm(2) after only 30 or 40 days. Immersion tests on coated steel-copper galvanic couple showed that EB/ER coating offered 100 times more protection than ER coating against steel dissolution and coating delamination on copper, which was mainly attributed to the passive metal oxide films formed by EB blocking both the anodic and cathodic reactions. Salt spray tests showed that 100 mu m EB/ER coating protected steel-copper couple for at least 2000 h.