956 resultados para Deep Brain-stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of optimum rectifier circuits for wireless energy harvesting in deep brain stimulation (DBS) devices. Since DBS demands compact and low power consumption devices, small, high conversion efficient, and high output voltage rectifiers need to be developed. The investigation that is presented in this paper is analytical and simulated based. Analysis on a variety of circuit configurations brings more evidence to improve the performance of rectifiers. Analytical parameters influencing the output DC voltage and the efficiency of the rectifiers are described. The operating frequency of the 915 MHz industrial, scientific and medical (ISM) radio band is used in this study. The maximum conversion efficiency of the LC matched half wave rectifier, the Greinacher voltage doubler, the Delon doubler, and the 2-stage voltage multiplier is obtained as 56.34%, 74.45%, 71.48%, and 31.44%, respectively, at the 30 dBm input power level. The corresponding maximum output DC voltages are 6.27 V, 16.83 V, 13.36 V, and 9.20 V. Thus the Greinacher voltage doubler is deemed as the best configuration according to the conversion efficiency and the output voltage measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A circular planar inverted-F antenna (PIFA) is designed and simulated at the industrial, scientific, and medical (ISM) band of 915 MHz for energy harvesting in a head-mountable deep brain stimulation device. Moreover, a rectifier is designed, and also the interaction of the PIFA with a rat head model is investigated. In the proposed PIFA, the top radiating layer is meandered, and a substrate of FR-4 is used. The radius and the height of the antenna are 10 mm and 1.8 mm, respectively. The bottom conductive layer works as a ground plate, and a superstrate of polyethylene reduces the electromagnetic penetration into the rat head. The resonance frequency of the designed antenna is 915 MHz with a bandwidth of 18 MHz at the return loss of -10 dB in free space. The antenna parameters (e.g. reflection coefficient, gain, radiation efficiency), electric field distribution, and SAR value are evaluated within a seven-layer rat head model by using the finite difference time domain EM simulation software XFdtd. The interactions of the antenna and the rat head model are studied in both functional and biological aspects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Development of an optimum rectenna for radio frequency energy harvesting in miniature head-mountable deep brain stimulation (DBS) devices. The designed miniature rectenna can operate a DBS device without battery for murine preclinical research. The battery-less operation of the device eliminates battery related difficulties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knock-out mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurogenic neuroprotection elicited by deep brain stimulation is emerging as a promising approach for treating patients with ischemic brain lesions. In rats, stimulation of the fastigial nucleus, but not dentate nucleus, has been shown to reduce the volume of focal infarction. Protection of neural tissue is a rapid intervention that has a relatively long-lasting effect, rendering fastigial nucleus stimulation (FNS) a potentially valuable method for clinical application. We review some of the main findings of animal experimental research from a clinical perspective. Results: Although the complete mechanisms of neuroprotection induced by FNS remain unclear, important data has been presented in the last two decades. The acute effect of electrical stimulation of the fastigial nucleus is likely mediated by a prolonged opening of potassium channels, and the sustained effect appears to be linked to inhibition of the apoptotic cascade. A better understanding of the cellular and molecular mechanisms underlying neurogenic neuroprotection by stimulation of deep brain nuclei, with special attention to the fastigial nucleus, can contribute toward improving neurological outcomes in ischemic brain insults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro di tesi presenta la progettazione, realizzazione e applicazione di un setup sperimentale miniaturizzato per la ricostruzione di immagine, con tecnica di Tomografia ad Impedenza Elettrica (EIT). Il lavoro descritto nel presente elaborato costituisce uno studio di fattibilità preliminare per ricostruire la posizione di piccole porzioni di tessuto (ordine di qualche millimetro) o aggregati cellulari dentro uno scaffold in colture tissutali o cellulari 3D. Il setup disegnato incorpora 8 elettrodi verticali disposti alla periferia di una camera di misura circolare del diametro di 10 mm. Il metodo di analisi EIT è stato svolto utilizzando i) elettrodi conduttivi per tutta l’altezza della camera (usati nel modello EIT bidimensionale e quasi-bidimensionale) e ii) elettrodi per deep brain stimulation (conduttivi esclusivamente su un ridotto volume in punta e posti a tre diverse altezze: alto, centro e basso) usati nel modello EIT tridimensionale. Il metodo ad elementi finiti (FEM) è stato utilizzato per la soluzione sia del problema diretto che del problema inverso, con la ricostruzione della mappa di distribuzione della conduttività entro la camera di misura. Gli esperimenti svolti hanno permesso di ricostruire la mappa di distribuzione di conduttività relativa a campioni dell’ordine del millimetro di diametro. Tali dimensioni sono compatibili con quelle dei campioni oggetto di studio in ingegneria tissutale e, anche, con quelle tipiche dei sistemi organ-on-a-chip. Il metodo EIT sviluppato, il prototipo del setup realizzato e la trattazione statistica dei dati sono attualmente in fase di implementazione in collaborazione con il gruppo del Professor David Holder, Dept. Medical Physics and Bioengineering, University College London (UCL), United Kingdom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many patients, optimal results after pallidal deep brain stimulation (DBS) for primary dystonia may appear over several months, possibly beyond 1 year after implant. In order to elucidate the factors predicting such protracted clinical effect, we retrospectively reviewed the clinical records of 44 patients with primary dystonia and bilateral pallidal DBS implants. Patients with fixed skeletal deformities, as well as those with a history of prior ablative procedures, were excluded. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores at baseline, 1 and 3 years after DBS were used to evaluate clinical outcome. All subjects showed a significant improvement after DBS implants (mean BFMDRS improvement of 74.9% at 1 year and 82.6% at 3 years). Disease duration (DD, median 15 years, range 2-42) and age at surgery (AS, median 31 years, range 10-59) showed a significant negative correlation with DBS outcome at 1 and 3 years. A partition analysis, using DD and AS, clustered subjects into three groups: (1) younger subjects with shorter DD (n = 19, AS < 27, DD ? 17); (2) older subjects with shorter DD (n = 8, DD ? 17, AS ? 27); (3) older subjects with longer DD (n = 17, DD > 17, AS ? 27). Younger patients with short DD benefitted more and faster than older patients, who however continued to improve 10% on average 1 year after DBS implants. Our data suggest that subjects with short DD may expect to achieve a better general outcome than those with longer DD and that AS may influence the time necessary to achieve maximal clinical response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgery for Parkinson's Disease (PD) is being increasingly used. The main reason for this renewal in surgical treatment for PD is the "deep brain stimulation" (DBS) that replaced the previously used stereotactic lesions in most centers. DBS allows a focal specific electrical stimulation of basal ganglia target instead of an irreversible lesion. Mainly bilateral DBS of the nucleus subthalamicus is now an established surgical treatment for PD. But DBS of the Globus pallidus internus and of the thalamus should still be considered in selected patients. DBS is an efficient treatment for motor complication of PD that can no longer be controlled by drug treatment. Dyskinesia, bradykinesia, tremor and rigor can be improved by DBS and the medication can be reduced. It is still unclear, however, how the improvement in motor symptoms affects quality of life in the long term. Furthermore, patients with severe cognitive and psychiatric symptoms as well as patients with severe axial symptoms should not be operated since these symptoms may worsen after surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation of different targets has been shown to drastically improve symptoms of a variety of neurological conditions. However, the occurrence of disabling side effects may limit the ability to deliver adequate amounts of current necessary to reach the maximal benefit. Computed models have suggested that reduction in electrode size and the ability to provide directional stimulation could increase the efficacy of such therapies. This has never been demonstrated in humans. In the present study, we assess the effect of directional stimulation compared to omnidirectional stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: Os efeitos da levodopa (LD) e da estimulação cerebral profunda (ECP) de núcleo subtalâmico (STN) sobre o equilíbrio e sintomas axiais são até o momento controversos. OBJETIVOS: Avaliar quantitativamente os efeitos da ECP de STN e da LD sobre o equilíbrio estático em pacientes com DP operados, em comparação com a LD em pacientes não operados. MÉTODOS: Trinta e um pacientes submetidos a ECP de STN entre 3 meses e 1 ano e meio antes da avaliação e 26 controles portadores de DP não operados, estágios Hoehn e Yahr 2 a 4 foram avaliados usando UPDRS para avaliação clínica e plataforma de força para avaliar oscilações posturais. O primeiro grupo foi avaliado com ECP e sem medicação, com ECP e com medicação e sem ECP e sem medicação. O segundo grupo foi avaliado com e sem medicação. Cada paciente foi avaliado com os olhos abertos e fechados. O deslocamento do centro de pressão anteroposterior, laterolateral, a área, velocidade e deslocamento total linear foram medidos pela plataforma de força. Os dados paramétricos foram comparados usando o teste t de Student e os dados não-paramétricos foram comparados pelo teste de Kruskal-Wallis. A avaliação clínica consistiu na parte 3 da escala UPDRS e na escala Hoehn e Yahr. Nível de significância estatística considerada foi p=0,05. RESULTADOS: Os pacientes não operados oscilaram mais quando sob efeito da levodopa do que sem medicação. No grupo operado, a maior oscilação é no grupo com ECP desligada e sem medicação. Tende a reduzir sob efeito da ECP apresenta redução significativa sob efeito simultâneo de ECP e levodopa. CONCLUSÃO: A associação da ECP de NST com medicação tem impacto positivo sobre o controle postural. O efeito da ECP de NST reverte o efeito negativo da levodopa sobre as oscilações observadas em pacientes não operados

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apropos the basal ganglia, the dominant striatum and globus pallidus internus (GPi) have been hypothesised to represent integral components of subcortical language circuitry. Working subcortical language theories, however, have failed thus far to consider a role for the STN in the mediation of linguistic processes, a structure recently defined as the driving force of basal ganglia output. The aim of this research was to investigate the impact of surgically induced functional inhibition of the STN upon linguistic abilities, within the context of established models of basal ganglia participation in language. Two males with surgically induced 'lesions' of the dominant and non-dominant dorsolateral STN, aimed at relieving Parkinsonian motor symptoms, served as experimental subjects. General and high-level language profiles were compiled for each subject up to 1 month prior to and 3 months following neurosurgery, within the drug-on state (i.e., when optimally medicated). Comparable post-operative alterations in linguistic performance were observed subsequent to surgically induced functional inhibition of the left and right STN. More specifically, higher proportions of reliable decline as opposed to improvement in post-operative performance were demonstrated by both subjects on complex language tasks, hypothesised to entail the interplay of cognitive-linguistic processes. The outcomes of the current research challenge unilateralised models of functional basal ganglia organisation with the proposal of a potential interhemispheric regulatory function for the STN in the mediation of high-level linguistic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In relation to motor control, the basal ganglia have been implicated in both the scaling and focusing of movement. Hypokinetic and hyperkinetic movement disorders manifest as a consequence of overshooting and undershooting GPi (globus pallidus internus) activity thresholds, respectively. Recently, models of motor control have been borrowed to translate cognitive processes relating to the overshooting and undershooting of GPi activity, including attention and executive function. Linguistic correlates, however, are yet to be extrapolated in sufficient detail. The aims of the present investigation were to: (1) characterise cognitive-linguistic processes within hypokinetic and hyperkinetic neural systems, as defined by motor disturbances; (2) investigate the impact of surgically-induced GPi lesions upon language abilities. Two Parkinsonian cases with opposing motor symptoms (akinetic versus dystonic/dyskinetic) served as experimental subjects in this research. Assessments were conducted both prior to as well as 3 and 12 months following bilateral posteroventral pallidotomy (PVP). Reliable changes in performance (i.e. both improvements and decrements) were typically restricted to tasks demanding complex linguistic operations across subjects. Hyperkinetic motor symptoms were associated with an initial overall improvement in complex language function as a consequence of bilateral PVP, which diminished over time, suggesting a decrescendo effect relative to surgical beneficence. In contrast, hypokinetic symptoms were associated with a more stable longitudinal linguistic profile, albeit defined by higher proportions of reliable decline versus improvement in postoperative assessment scores. The above findings endorsed the integration of the GPi within cognitive mechanisms involved in the arbitration of complex language functions. In relation to models of motor control, 'focusing' was postulated to represent the neural processes underpinning lexical-semantic manipulation, and 'scaling' the potential allocation of cognitive resources during the mediation of high-level linguistic tasks. (c) 2005 Elsevier Ltd. All rights reserved.