826 resultados para Data mining models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualquer assunto relacionado com a saúde é sempre um tema sensível, pela importância que tem junto da população, já que interage diretamente com o bem-estar das pessoas e, essencialmente, com a sensação de segurança que as estas pretendem ter na prestação dos cuidados básicos de saúde. Dados estatísticos mostram que a população está cada vez mais envelhecida, reforçando a importância da existência de bons centros hospitalares e de um bom Sistema Nacional de Saúde (SNS) (Plano Nacional de Saúde, 2010). Em Portugal, caso os pacientes necessitem de cuidados mais urgentes, podem recorrer ao Serviço de Urgências disponibilizado para toda a população através do SNS. No entanto, a gestão e planeamento deste serviço é complexa, dado este serviço ser frequentemente utilizado por pacientes que não necessitam de cuidados urgentes, levando a que os hospitais deixem de conseguir dar a resposta esperada, implicando a prestação por vezes um serviço de menor qualidade. Neste sentido, analisaram-se dados de um hospital do norte do país com o intuito de perceber o ponto de situação das urgências, de forma a encontrar padrões relevantes através da análise de clusters e de regras de associação. Começando pela análise de clusters, utilizaram-se apenas as variáveis que foram consideradas importantes para o problema, resultando da análise final 3 clusters. O primeiro cluster é constituído por elementos do sexo masculino de todas as idades, o segundo cluster por elementos do sexo masculino mais jovens e por elementos do sexo feminino até aos 60 anos e o terceiro cluster apenas por elementos do sexo feminino a partir dos 40 anos. No final verificaram-se muitas semelhanças entre os clusters 1 e 3, pois ambos continham os pacientes mais idosos, havendo um padrão comum no seu comportamento. No ano 2012 não houve registo de nenhuma epidemia, não havendo por isso nenhuma doença que se destacasse comparativamente às restantes. Concluiu-se também que na maior parte dos casos houve a necessidade de uma intervenção urgente (pulseira de cor Amarela), no entanto a maioria dos pacientes observados conseguiu regressar às suas habitações após as consultas nas Urgências Hospitalares, sem intervenções médicas adicionais. Relativamente às regras de associação, houve a necessidade de transformar e eliminar algumas variáveis que enviesassem o estudo. Após o processo da criação das regras de associação, percebeu-se que as regras eram muito similares entre si, apresentando uma maior confiança nas variáveis que apareceram em maior número (“Pacientes com pulseira de cor Amarela”, “distrito do Porto” ou “Alta Médica para a Residência”).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, epidemiology study is done by means of literature survey in groups identified to be at higher potential for DDIs as well as in other cases to explore patterns of DDIs and the factors affecting them. The structure of the FDA Adverse Event Reporting System (FAERS) database is studied and analyzed in detail to identify issues and challenges in data mining the drug-drug interactions. The necessary pre-processing algorithms are developed based on the analysis and the Apriori algorithm is modified to suit the process. Finally, the modules are integrated into a tool to identify DDIs. The results are compared using standard drug interaction database for validation. 31% of the associations obtained were identified to be new and the match with existing interactions was 69%. This match clearly indicates the validity of the methodology and its applicability to similar databases. Formulation of the results using the generic names expanded the relevance of the results to a global scale. The global applicability helps the health care professionals worldwide to observe caution during various stages of drug administration thus considerably enhancing pharmacovigilance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relates to the following software for analysing Blackboard stats http://www.edshare.soton.ac.uk/11134/ Is supporting material for the following podcast: http://youtu.be/yHxCzjiYBoU