980 resultados para Data flow
Resumo:
BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.
Resumo:
A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the strength of mode locking is proposed.
Resumo:
Flow maldistribution of the exhaust gas entering a Diesel Particulate Filter (DPF) can cause uneven soot distribution during loading and excessive temperature gradients during the regeneration phase. Minimising the magnitude of this maldistribution is therefore an important consideration in the design of the inlet pipe and diffuser, particularly in situations where packaging constraints dictate bends in the inlet pipe close to the filter, or a sharp diffuser angle. This paper describes the use of Particle Image Velocimetry (PIV) to validate a Computational Fluid Dynamic (CFD) model of the flow within the inlet diffuser of a DPF so that CFD can be used with confidence as a tool to minimise this flow maldistribution. PIV is used to study the flow of gas into a DPF over a range of steady state flow conditions. The distribution of flow approaching the front face of the substrate was of particular interest to this study. Optically clear diffusing cones were designed and placed between pipe and substrate to allow PIV analysis to take place. Stereoscopic PIV was used to eliminate any error produced by the optical aberrations caused by looking through the curved wall of the inlet cone. In parallel to the experiments, numerical analysis was carried out using a CFD program with an incorporated DPF model. Boundary conditions for the CFD simulations were taken from the experimental data, allowing an experimental validation of the numerical results. The CFD model incorporated a DPF model, the cement layers seen in segmented filters and the intumescent matting that is commonly used to pack the filter into a metal casing. The mesh contained approximately 580,000 cells and used the realizable ?-e turbulence model. The CFD simulation predicted both pressure drop across the DPF and the velocity field within the cone and at the DPF face with reasonable accuracy, providing confidence in the use the CFD in future work to design new, more efficient cones.
Resumo:
We propose an exchange rate model that is a hybrid of the conventional specification with monetary fundamentals and the Evans–Lyons microstructure approach. We estimate a model augmented with order flow variables, using a unique data set: almost 100 monthly observations on interdealer order flow on dollar/euro and dollar/yen. The augmented macroeconomic, or “hybrid,” model exhibits greater in-sample stability and out of sample forecasting improvement vis-à-vis the basic macroeconomic and random walk specifications.
Resumo:
The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.
Resumo:
When studying heterogeneous aquifer systems, especially at regional scale, a degree of generalization is anticipated. This can be due to sparse sampling regimes, complex depositional environments or lack of accessibility to measure the subsurface. This can lead to an inaccurate conceptualization which can be detrimental when applied to groundwater flow models. It is important that numerical models are based on observed and accurate geological information and do not rely on the distribution of artificial aquifer properties. This can still be problematic as data will be modelled at a different scale to which it was collected. It is proposed here that integrating geophysics and upscaling techniques can assist in a more realistic and deterministic groundwater flow model. In this study, the sedimentary aquifer of the Lagan Valley in Northern Ireland is chosen due to intruding sub-vertical dolerite dykes. These dykes are of a lower permeability than the sandstone aquifer. The use of airborne magnetics allows the delineation of heterogeneities, confirmed by field analysis. Permeability measured at the field scale is then upscaled to different levels using a correlation with the geophysical data, creating equivalent parameters that can be directly imported into numerical groundwater flow models. These parameters include directional equivalent permeabilities and anisotropy. Several stages of upscaling are modelled in finite element. Initial modelling is providing promising results, especially at the intermediate scale, suggesting an accurate distribution of aquifer properties. This deterministic based methodology is being expanded to include stochastic methods of obtaining heterogeneity location based on airborne geophysical data. This is through the Direct Sample method of Multiple-Point Statistics (MPS). This method uses the magnetics as a training image to computationally determine a probabilistic occurrence of heterogeneity. There is also a need to apply the method to alternate geological contexts where the heterogeneity is of a higher permeability than the host rock.
Resumo:
The study outlined in Testing Tidal Turbines Part 1 explains the variation in performance between turbines operating in steady and turbulent flow conditions. However, the impact of turbulence on devices is generally not well understood. Furthermore, the turbulence characteristics of high velocity marine currents have not been extensively studied. Therefore, knowledge of their characteristics must be expanded and methodologies to predict the impact of the characteristics on devices developed and improved. This study examines the measurement of tidal currents at a site used for testing of medium scale tidal turbines. The data being discussed was collected with a point velocimeter (ADV). The processing procedures implemented are discussed and the resulting estimated turbulence spectra and turbulence intensities are presented. The results contribute to the improvement of knowledge regarding tidal current characteristics. This will be fundamental to the optimisation of the design and operation of tidal stream devices.
Integrating Multiple Point Statistics with Aerial Geophysical Data to assist Groundwater Flow Models
Resumo:
The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.