874 resultados para Data acquisition card
Resumo:
La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.
Resumo:
The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.
Resumo:
Este PFC es un trabajo muy práctico, los objetivos fueron impuestos por el tutor, como parte del desarrollo de herramientas (software y hardware) que serán utilizados posteriormente a nivel de docencia e investigación. El PFC tiene dos áreas de trabajo, la principal y primera que se expone es la utilización de una herramienta de simulación térmica para caracterizar dispositivos semiconductores con disipador, la segunda es la expansión de una tarjeta de adquisición de datos con unas PCBs diseñadas, que no estaban disponibles comercialmente. Se ha probado y configurado “Autodesk 2013 Inventor Fusion” y “Autodesk 2013 Simulation and Multiphysics” para simulación térmica de dispositivos de alta potencia. Estas aplicaciones son respectivamente de diseño mecánico y simulación térmica, y la UPM dispone actualmente de licencia. En esta parte del proyecto se realizará un manual de utilización, para que se continúe con esta línea de trabajo en otros PFC. Además se han diseñado mecánicamente y simulado térmicamente diodos LED de alta potencia luminosa (High Brightness Lights Emitting Diodes, HB-LEDs), tanto blancos como del ultravioleta cercano (UVA). Las simulaciones térmicas son de varios tipos de LEDs que actualmente se están empleando y caracterizando térmicamente en Proyectos Fin de Carrera y una Tesis doctoral. En la segunda parte del PFC se diseñan y realizan unas placas de circuito impreso (PCB) cuya función es formar parte de sistemas de instrumentación de adquisición automática de datos basados en LabVIEW. Con esta instrumentación se pueden realizar ensayos de fiabilidad y de otro tipo a dispositivos y sistemas electrónicos. ABSTRACT. The PFC is a very practical work, the objectives were set by the tutor, as part of the development of tools (software and hardware) that will be used later at level of teaching and research. The PFC has two parts, the first one explains the use of a software tool about thermal simulation to characterize devices semiconductors with heatsink, and second one is the expansion of card data acquisition with a PCBs designed, which were not available commercially. It has been tested and configured "Autodesk 2013 Inventor Fusion" and "Autodesk 2013 Simulation Multiphysics” for thermal simulation of high power devices. These applications are respectively of mechanical design and thermal simulation, and the UPM has at present license. In this part of the project a manual of use will be realized, so that it is continued by this line of work in other PFC. Also they have been designed mechanically and simulated thermally LEDs light (High Brightness Lights Emitting Diodes , HB- LEDs) both white and ultraviolet. Thermal simulations are several types of LEDs are now being used in thermally characterizing in Thesis and PhD. In the second part of the PFC there are designed and realized circuit board (PCB) whose function is to be a part of instrumentation systems of automatic acquisition based on LabVIEW data. With this instrumentation can perform reliability testing and other electronic devices and systems.
Resumo:
The commercial data acquisition systems used for seismic exploration are usually expensive equipment. In this work, a low cost data acquisition system (Geophonino) has been developed for recording seismic signals from a vertical geophone. The signal goes first through an instrumentation amplifier, INA155, which is suitable for low amplitude signals like the seismic noise, and an anti-aliasing filter based on the MAX7404 switched-capacitor filter. After that, the amplified and filtered signal is digitized and processed by Arduino Due and registered in an SD memory card. Geophonino is configured for continuous registering, where the sampling frequency, the amplitude gain and the registering time are user-defined. The complete prototype is an open source and open hardware system. It has been tested by comparing the registered signals with the ones obtained through different commercial data recording systems and different kind of geophones. The obtained results show good correlation between the tested measurements, presenting Geophonino as a low-cost alternative system for seismic data recording.
Resumo:
LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].
Resumo:
This dataset consists of 2D footprints of the buildings in the metropolitan Boston area, based on tiles in the orthoimage index (orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 237890, 237894, 237898, 237902, 241890, 241894, 241898, 241902, 245898, 245902). This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). Roof height and footprint elevation attributes (derived from 1-meter resolution LIDAR (LIght Detection And Ranging) data) are included as part of each building feature. This data can be combined with other datasets to create 3D representations of buildings and the surrounding environment.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Virginia Department of Transportation, Richmond
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.