891 resultados para Daily rainfall
Resumo:
The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.
Resumo:
In natural estuaries, scalar diffusion and dispersion are driven by turbulence. In the present study, detailed turbulence measurements were conducted in a small subtropical estuary with semi-diurnal tides under neap tide conditions. Three acoustic Doppler velocimeters were installed mid-estuary at fixed locations close together. The units were sampled simultaneously and continuously at relatively high frequency for 50 h. The results illustrated the influence of tidal forcing in the small estuary, although low frequency longitudinal velocity oscillations were observed and believed to be induced by external resonance. The boundary shear stress data implied that the turbulent shear in the lower flow region was one order of magnitude larger than the boundary shear itself. The observation differed from turbulence data in a laboratory channel, but a key feature of natural estuary flow was the significant three dimensional effects associated with strong secondary currents including transverse shear events. The velocity covariances and triple correlations, as well as the backscatter intensity and covariances, were calculated for the entire field study. The covariances of the longitudinal velocity component showed some tidal trend, while the covariances of the transverse horizontal velocity component exhibited trends that reflected changes in secondary current patterns between ebb and flood tides. The triple correlation data tended to show some differences between ebb and flood tides. The acoustic backscatter intensity data were characterised by large fluctuations during the entire study, with dimensionless fluctuation intensity I0b =Ib between 0.46 and 0.54. An unusual feature of the field study was some moderate rainfall prior to and during the first part of the sampling period. Visual observations showed some surface scars and marked channels, while some mini transient fronts were observed.
Resumo:
The idea of body weight regulation implies that a biological mechanism exerts control over energy expenditure and food intake. This is a central tenet of energy homeostasis. However, the source and identity of the controlling mechanism have not been identified, although it is often presumed to be some long-acting signal related to body fat, such as leptin. Using a comprehensive experimental platform, we have investigated the relationship between biological and behavioural variables in two separate studies over a 12-week intervention period in obese adults (total n 92). All variables have been measured objectively and with a similar degree of scientific control and precision, including anthropometric factors, body composition, RMR and accumulative energy consumed at individual meals across the whole day. Results showed that meal size and daily energy intake (EI) were significantly correlated with fat-free mass (FFM, P values ,0·02–0·05) but not with fat mass (FM) or BMI (P values 0·11–0·45) (study 1, n 58). In study 2 (n 34), FFM (but not FM or BMI) predicted meal size and daily EI under two distinct dietary conditions (high-fat and low-fat). These data appear to indicate that, under these circumstances, some signal associated with lean mass (but not FM) exerts a determining effect over self-selected food consumption. This signal may be postulated to interact with a separate class of signals generated by FM. This finding may have implications for investigations of the molecular control of food intake and body weight and for the management of obesity.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Conventional rainfall classification for modelling and prediction is quantity based. This approach can lead to inaccuracies in stormwater quality modelling due to the assignment of stochastic pollutant parameters to a rainfall event. A taxonomy for natural rainfall events in the context of stormwater quality is presented based on an in-depth investigation of the influence of rainfall characteristics on stormwater quality. In the research study, the natural rainfall events were classified into three types based on average rainfall intensity and rainfall duration and the classification was found to be independent of the catchment characteristics. The proposed taxonomy provides an innovative concept in stormwater quality modelling and prediction and will contribute to enhancing treatment design for stormwater quality mitigation.
Resumo:
Rapid urbanisation and resulting continuous increase in traffic has been recognised as key factors in the contribution of increased pollutant loads to urban stormwater and in turn to receiving waters. Urbanisation primarily increases anthropogenic activities and the percentage of impervious surfaces in urban areas. These processes are collectively responsible for urban stormwater pollution. In this regard, urban traffic and land use related activities have been recognised as the primary pollutant sources. This is primarily due to the generation of a range of key pollutants such as solids, heavy metals and PAHs. Appropriate treatment system design is the most viable approach to mitigate stormwater pollution. However, limited understanding of the pollutant process and transport pathways constrains effective treatment design. This highlights necessity for the detailed understanding of traffic and other land use related pollutants processes and pathways in relation to urban stormwater pollution. This study has created new knowledge in relation to pollutant processes and transport pathways encompassing atmospheric pollutants, atmospheric deposition and build-up on ground surfaces of traffic generated key pollutants. The research study was primarily based on in-depth experimental investigations. This thesis describes the extensive knowledge created relating to the processes of atmospheric pollutant build-up, atmospheric deposition and road surface build-up and establishing their relationships as a chain of processes. The analysis of atmospheric deposition revealed that both traffic and land use related sources contribute total suspended particulate matter (TSP) to the atmosphere. Traffic sources become dominant during weekdays whereas land use related sources become dominant during weekends due to the reduction in traffic sources. The analysis further concluded that atmospheric TSP, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) concentrations are highly influenced by total average daily heavy duty traffic, traffic congestion and the fraction of commercial and industrial land uses. A set of mathematical equation were developed to predict TSP, PAHs and HMs concentrations in the atmosphere based on the influential traffic and land use related parameters. Dry deposition samples were collected for different antecedent dry days and wet deposition samples were collected immediately after rainfall events. The dry deposition was found to increase with the antecedent dry days and consisted of relatively coarser particles (greater than 1.4 ìm) when compared to wet deposition. The wet deposition showed a strong affinity to rainfall depth, but was not related to the antecedent dry period. It was also found that smaller size particles (less than 1.4 ìm) travel much longer distances from the source and deposit mainly with the wet deposition. Pollutants in wet deposition are less sensitive to the source characteristics compared to dry deposition. Atmospheric deposition of HMs is not directly influenced by land use but rather by proximity to high emission sources such as highways. Therefore, it is important to consider atmospheric deposition as a key pollutant source to urban stormwater in the vicinity of these types of sources. Build-up was analysed for five different particle size fractions, namely, <1 ìm, 1-75 ìm, 75-150 ìm, 150-300 ìm and >300 ìm for solids, PAHs and HMs. The outcomes of the study indicated that PAHs and HMs in the <75 ìm size fraction are generated mainly by traffic related activities whereas the > 150 ìm size fraction is generated by both traffic and land use related sources. Atmospheric deposition is an important source for HMs build-up on roads, whereas the contribution of PAHs from atmospheric sources is limited. A comprehensive approach was developed to predict traffic and other land use related pollutants in urban stormwater based on traffic and other land use characteristics. This approach primarily included the development of a set of mathematical equations to predict traffic generated pollutants by linking traffic and land use characteristics to stormwater quality through mathematical modelling. The outcomes of this research will contribute to the design of appropriate treatment systems to safeguard urban receiving water quality for future traffic growth scenarios. The „real world. application of knowledge generated was demonstrated through mathematical modelling of solids in urban stormwater, accounting for the variability in traffic and land use characteristics.
Resumo:
Purpose: There are some limited reports, based on questionnaire data, which suggest that outdoor activity decreases the risk of myopia in children and may offset the myopia risk associated with prolonged near work. The aim of this study was to explore the relationship between near work, indoor illumination, daily sunlight and ultraviolet (UV) exposure in emmetropic and myopic University students, given that University students perform significant amounts of near work and as a group have a high prevalence of myopia. Methods: Participants were 35 students, aged 17 to 25 years who were classified as being emmetropic (n=13), or having stable (n=12) or progressing myopia (n=10). During waking hours on three separate days participants wore a light sensor data logger (HOBO) and a polysulphone UV dosimeter; these devices measured daily illuminance and accumulative UV exposure respectively; participants also completed a daily activity log. Results: No significant between group differences were observed for average daily illuminance (p=0.732), number of hours per day spent in sunlight (p=0.266), outdoor shade (p=0.726), bright indoor/dim outdoor light (p=0.574) or dim room illumination (p=0.484). Daily UV exposure was significantly different across the groups (p=0.003); with stable myopes experiencing the greatest UV exposure (versus emmetropes p=0.002; versus progressing myopes p=0.004). Conclusions: The current literature suggests there is a link between myopia protection and spending time outdoors in children. Our data provides some evidence of this relationship in young adults and highlights the need for larger studies to further investigate this relationship longitudinally.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
Recent research indicates that brief periods (60 minutes) of monocular defocus lead to small but significant changes in human axial length. However, the effects of longer periods of defocus on the axial length of human eyes are unknown. We examined the influence of a 12 hour period of monocular myopic defocus on the natural daily variations occurring in axial length and choroidal thickness of young adult emmetropes. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 13 emmetropic young adults over three consecutive days. The natural daily rhythms (Day 1, baseline day, no defocus), the daily rhythms with monocular myopic defocus (Day 2, defocus day, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, recovery day, no defocus) were all examined. Significant variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days (p<0.0001). The magnitude and timing of the daily variations in axial length and choroidal thickness were significantly altered with the monocular myopic defocus on day 2 (p<0.0001). Following the introduction of monocular myopic defocus, the daily peak in axial length occurred approximately 6 hours later, and the peak in choroidal thickness approximately 8.5 hours earlier in the day compared to days 1 and 3 (with no defocus). The mean amplitude (peak to trough) of change in axial length (0.030 ± 0.012 on day 1, 0.020 ± 0.010 on day 2 and 0.033 ± 0.012 mm on day 3) and choroidal thickness (0.030 ± 0.007 on day 1, 0.022 ± 0.006 on day 2 and 0.027 ± 0.009 mm on day 3) were also significantly different between the three days (both p<0.05). The introduction of monocular myopic defocus disrupts the daily variations in axial length and choroidal thickness of human eyes (in terms of both amplitude and timing) that return to normal the following day after removal of the defocus.
Resumo:
Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multimodel climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (08C, 18C, 28C, and 38C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT4.5, using 50 years of daily weather data.Wefound that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.
Resumo:
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option.