1000 resultados para DYNAMIC RECRYSTALLIZATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A thermomechanical processing (TMP) structure map is proposed that plots the critical strains required for dynamic recrystallization along with the grain sizes that result. These maps are useful in identifying the limits to grain refinement and designing hot working processes. They are readily constructed for well studied alloys such as plain carbon steel. In light of the recent interest in the hot working of magnesium, initial steps are taken here to construct a TMP structure map for the most common wrought magnesium alloy, AZ31. The completion of dynamic recrystallization is estimated using a geometrical approach and a twinning region is identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the grain size on the deformation of Mg–3Al–1Zn was examined in compression at 300 °C. At low strains the flow stress increases with increasing grain size. This is interpreted in terms of dynamic recrystallization. Empirical models of dynamic recrystallization are developed and employed to generate a microstructure map.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of ultrafine grained steels is an area of intense research around the World. There are a number of methods to produce grain sizes of approximately 1 µm, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. This paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. It is shown that this requires deformation within the Ae3 to Ar3 temperature range for a given alloy. The formation of ultrafine ferrite involves a dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation arises from the introduction of additional intragranular nucleation sites. It is possible that the deformation also hinders the growth or coarsening of the ferrite and may also lead to dynamic recrystallization of the ferrite. The most likely commercial exploitation of ultrafine ferrite would appear to rely on the formation of a critical volume fraction of dynamic strain induced ferrite followed by controlled cooling to ensure this is maintained to room temperature and to also form other secondary phases, such as martensite, bainite and/or retained austenite to improve the formability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructural evolution during compression (at 350°C and a strain rate of 0.01s-1) was examined for magnesium alloy AZ31 received in the "as-cast" condition. It was revealed that at low strains, many twins are produced and dynamically recrystallized (DRX) grains form as a necklace along pre-existing grain boundaries. At higher strains, DRX stagnates, most likely due to the accommodation of deformation in the DRX fraction of the material. It was also observed that twin boundaries act as sites for the nucleation of DRX grains. The analysis was repeated for samples pre-compressed to a strain of 0.15 at room temperature prior to the hot deformation step. The idea of these additional tests was to increase the degree of twinning and therefore the density of sites for the nucleation of DRX. It was found that statically recrystallized (SRX) grains developed at the twins during heating to the test temperature. When these samples were deformed, the peak flow stress was reduced by approximately 20% and the development of DRX was enhanced. This can be attributed to the accelerated nucleation of DRX in the refined SRX structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of structure during the hot working of an austenitic Ni-30%Fe alloy is studied using EBSD analysis of samples tested in torsion. A microstructural map in temperature-strain space that plots grain size, cell size, fracture and dynamic recrystallization is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of aging pre-treatment on the compressive deformation of a commercial WE54 alloy is studied. Age hardening treatments were performed at 170 °C, 250 °C and 300 °C. Compression testing was then carried out for the peak aged samples at temperatures between ambient and 450 °C. Twinning dominated the deformation at lower temperatures for all initial microstructures. This behaviour was replaced by slip dominated flow when the temperature was raised. The temperature of the transition from twinning to slip dominated flow was only mildly sensitive to the pre-treatment. It is also evident that dynamic recrystallization is retarded in this alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferrite grain/subgrain structures evolution during the extended dynamic softening of a plain low carbon steel was investigated throughout the large strain warm deformation by hot torsion. Microstructural analysis with electron back-scattering diffraction (EBSD) scanning electron microscope (FEG/SEM) was carried out on the ferrite microstructural parameters. The results showed that the warm flow stress–strain curves are similar to those affected only by dynamic softening and an extended warm flow softening is seen during large strain deformation up to 30. Furthermore, with an increase in strain up to ~ vert, similar1 the grain size of ferrite, misorientation angle and fraction of high-angle boundaries gradually decrease and fraction of low-angle boundaries increases. With a further increase in the strain beyond ~, vert, similar2, these parameters remain approximately unchanged. No evidence of discontinuous dynamic recrystallisation involving nucleation and growth of new grains was found within ferrite. Therefore, the dynamic softening mechanism observed during large strain ferritic deformation is explained by continuous dynamic recrystallization (CDRX).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, kinetics of the static (SRX) and metadynamic recrystallization (MDRX) of AISI4135 steel was investigated using hot torsion tests. Continuous torsion tests were carried out to determine the critical strain for dynamic recrystallization (DRX). The times for 50% recrystallization of SRX and MDRX were determined, respectively, by means of interrupted torsion tests. Furthermore, austenite grain size (AGS) evolution due to recrystallization (RX) was measured by optical microscopy. With the help of the evolution model established, the AGS for hot bar rolling of AISI4135 steel was predicted numerically. The predicted AGS values were compared with the results using the other model available in the literature and experimental results to verify its validity. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to investigate the effect of these parameters on AGS distributions for square-diamond pass rolling. Such numerical results were found to be beneficial in understanding the effect of processing conditions on the microstructure evolution better and control the rolling processes more accurately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relation between the deformation and post-deformation softening behaviours of austenite is examined in a 304 stainless steel. This correlation has been exploited in the modelling of hot rolling and it is argued here that the key to this understanding lies in the deformation structure. The latter is characterized in the present work by the fraction of dynamic recrystallization. The value of this fraction at the peak in the flow stress curve is found to decrease with increasing stress (i.e. with decreasing temperature and increasing strain rate). By contrast, the fraction of dynamic  recrystallization at the strain corresponding to the point where  post-deformation softening becomes strain independent is found to be constant. These observations are used to explain the nature of the important difference between the flow curve peak and the onset of strain independent post-deformation softening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free steel was investigated using hot torsion. Tests were performed at temperatures between 765 °C and 850 °C at strain rates between 0.003 s−1 and 1 s−1 for samples with grain sizes of 25 μm, 75 μm and 150 μm. The structures were observed using EBSD analysis and are consistent with those expected for materials dominated by dynamic recovery. Some evidence was found for small amounts of thermally induced migration of pre-existing boundary (bulging) and for the generation of new segments of high angle boundaries by continuous dynamic recrystallization. The early onset of a steady-state flow stress in the finer grained samples is attributed to one or a combination of thermally induced boundary migration and enhanced rates of recovery near subgrain (and grain) boundaries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 2D cellular automation approach was used to simulate microstructure evolution during and after hot deformation. Initial properties of the microstructure and dislocation density were used as input data to the cellular automation model. The flow curve and final grain size were the output data for the dynamic recrystallization simulation, and softening kinetics curves were the output data of static and metadynamic recrystallization simulations. The model proposed in this work considered the effect of thermomechanical parameters (e.g., temperature and strain rate) on the nucleation and growth kinetics during dynamic recrystallization. The dynamic recrystallized microstructures at different strains, temperatures, and strain rates were used as input data for static and metadynamic recrystallization simulations. It was shown that the cellular automation approach can model the final microstructure and flow curve successfully in dynamic recrystallization conditions. The postdeformation simulation results showed that the time for 50% recrystallization decreases with increasing strain for a given initial grain size and that dynamic recrystallization slows the postdeformation recrystallization kinetics compared to a model without dynamic recrystallization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project aimed to model the microstructure evolution during and following hot deformation using a cellular automaton approach. The flow curves, softening kinetics and final microstructures were used as the input data for the post-deformation simulation to elucidate the effect of dynamic recrystallization on the post-deformation softening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model selection scheme was extended to a multi-dimensional representation of the hot torsion test torque, twist and twist rate data to calculate partial derivatives of the torque data with respect to twist and twist rate. These enabled calculation of the instantaneous strain and strain rate hardening indices in the Fields and Backofen method. The concept of an iso-parametric shape function has been borrowed from the finite element method for adding twist rate as a dependant variable to the torque-twist models identified by the model selection scheme. Expressions to calculate the hardening indices, when employing a rational model of torsion data, were derived and presented. Subsequently, the models were used for post processing the data and determining hot strength behaviour, taking into account variations of strain and strain rate hardening indices during the deformation. To substantiate the technique, the hot flow behaviour of API-X70 micro-alloyed steel was determined using a range of hot torsion test data for the material. The flow stress obtained using the instantaneous hardening indices were compared with that obtained by the orthodox technique. For the investigated cases, the onset of dynamic recrystallization (DRX) predicted by the presented technique deviated considerably from those obtained when the average indices were used.