981 resultados para DYNAMIC PROGRAMMING
Resumo:
In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.
Resumo:
This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.
Resumo:
The medium term hydropower scheduling (MTHS) problem involves an attempt to determine, for each time stage of the planning period, the amount of generation at each hydro plant which will maximize the expected future benefits throughout the planning period, while respecting plant operational constraints. Besides, it is important to emphasize that this decision-making has been done based mainly on inflow earliness knowledge. To perform the forecast of a determinate basin, it is possible to use some intelligent computational approaches. In this paper one considers the Dynamic Programming (DP) with the inflows given by their average values, thus turning the problem into a deterministic one which the solution can be obtained by deterministic DP (DDP). The performance of the DDP technique in the MTHS problem was assessed by simulation using the ensemble prediction models. Features and sensitivities of these models are discussed. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose - The purpose of this paper is twofold: to analyze the computational complexity of the cogeneration design problem; to present an expert system to solve the proposed problem, comparing such an approach with the traditional searching methods available.Design/methodology/approach - The complexity of the cogeneration problem is analyzed through the transformation of the well-known knapsack problem. Both problems are formulated as decision problems and it is proven that the cogeneration problem is np-complete. Thus, several searching approaches, such as population heuristics and dynamic programming, could be used to solve the problem. Alternatively, a knowledge-based approach is proposed by presenting an expert system and its knowledge representation scheme.Findings - The expert system is executed considering two case-studies. First, a cogeneration plant should meet power, steam, chilled water and hot water demands. The expert system presented two different solutions based on high complexity thermodynamic cycles. In the second case-study the plant should meet just power and steam demands. The system presents three different solutions, and one of them was never considered before by our consultant expert.Originality/value - The expert system approach is not a "blind" method, i.e. it generates solutions based on actual engineering knowledge instead of the searching strategies from traditional methods. It means that the system is able to explain its choices, making available the design rationale for each solution. This is the main advantage of the expert system approach over the traditional search methods. On the other hand, the expert system quite likely does not provide an actual optimal solution. All it can provide is one or more acceptable solutions.
Resumo:
The increasing amount of sequences stored in genomic databases has become unfeasible to the sequential analysis. Then, the parallel computing brought its power to the Bioinformatics through parallel algorithms to align and analyze the sequences, providing improvements mainly in the running time of these algorithms. In many situations, the parallel strategy contributes to reducing the computational complexity of the big problems. This work shows some results obtained by an implementation of a parallel score estimating technique for the score matrix calculation stage, which is the first stage of a progressive multiple sequence alignment. The performance and quality of the parallel score estimating are compared with the results of a dynamic programming approach also implemented in parallel. This comparison shows a significant reduction of running time. Moreover, the quality of the final alignment, using the new strategy, is analyzed and compared with the quality of the approach with dynamic programming.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this letter, a semiautomatic method for road extraction in object space is proposed that combines a stereoscopic pair of low-resolution aerial images with a digital terrain model (DTM) structured as a triangulated irregular network (TIN). First, we formulate an objective function in the object space to allow the modeling of roads in 3-D. In this model, the TIN-based DTM allows the search for the optimal polyline to be restricted along a narrow band that is overlaid upon it. Finally, the optimal polyline for each road is obtained by optimizing the objective function using the dynamic programming optimization algorithm. A few seed points need to be supplied by an operator. To evaluate the performance of the proposed method, a set of experiments was designed using two stereoscopic pairs of low-resolution aerial images and a TIN-based DTM with an average resolution of 1 m. The experimental results showed that the proposed method worked properly, even when faced with anomalies along roads, such as obstructions caused by shadows and trees.
Resumo:
In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011