991 resultados para DOPED LAF3 NANOPARTICLES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Frequency upconversion (UC) properties of Tm3+ doped TeO2-ZnO glasses containing silver nanoparticles (NPs) were investigated. Infrared-to-visible and infrared-to-infrared UC processes associated to the Tm3+ ions were studied by exciting the samples with a cw 1050 nm ytterbium laser. The luminescence intensity as a function of laser intensity was also measured using a pulsed 1047 nm Nd3+:YVO laser in order to determine the number of photons participating in the UC processes. Enhancement of the UC signals for samples heat-treated during various time intervals is attributed to the growth of the local field in the vicinity of the NPs. PL enhancement by one-order of magnitude was observed in the whole spectrum of the samples heat-treated during 48 h. On the other hand PL quenching was observed for the samples heat-treated more than 48 h. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of silver nanoparticles (NPs) on the frequency upconversion luminescence in Er3+ doped TeO2-WO3-Bi2O3 glasses is reported. The effect of the NPs on the Er3+ luminescence was controlled by appropriate heat-treatment of the samples. Enhancement up to 700% was obtained for the upconverted emissions at 527, 550, and 660 nm, when a laser at 980 nm is used for excitation. Since the laser frequency is far from the NPs surface plasmon resonance frequency, the luminescence enhancement is attributed to the local field increase in the proximity of the NPs and not to energy transfer from the NPs to the emitters as is usually reported. This is the first time that the effect is investigated for tellurite-tungstate-bismutate glasses and the enhancement observed is the largest reported for a tellurium oxide based glass. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754468]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-performance and low-cost bifunctional electrocatalysts play crucial roles in oxygen reduction and evolution reactions. Herein, a novel three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding CoO nanoparticles into nitrogen and sulfur co-doped carbon nanofiber networks (denoted as CoO@N/S-CNF) through a facile approach. The carbon nanofiber networks were derived from a nanostructured biological material which provided abundant functional groups to nucleate and anchor nanoparticles while retaining its interconnected 3D porous structure. The composite possesses a high specific surface area and graphitization degree, which favors both mass transport and charge transfer for electrochemical reaction. The CoO@N/S-CNF not only exhibits highly efficient catalytic activity towards oxygen reduction reaction (ORR) in alkaline media with an onset potential of about 0.84 V, but also shows better stability and stronger resistance to methanol than Pt/C. Furthermore, it only needs an overpotential of 1.55 V to achieve a current density of 10 mA cm-2, suggesting that it is an efficient electrocatalyst for oxygen evolution reaction (OER). The ΔE value (oxygen electrode activity parameter) of CoO@N/S-CNF is calculated to be 0.828 V, which demonstrates that the composite could be a promising bifunctional electrocatalyst for both ORR and OER.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of mesoporous silica nanospheres (MSNs) loaded with drugs/growth factors to induce osteogenic differentiation of stem cells has been trialed by a number of researchers recently. However, limitations such as high cost, complex fabrication and unintended side effects from supraphysiological concentrations of the drugs/growth factors represent major obstacles to any potential clinical application in the near term. In this study we reported an in situ one-pot synthesis strategy of MSNs doped with hypoxia-inducing copper ions and systematically evaluated the nanospheres by in vitro biological assessments. The Cu-containing mesoporous silica nanospheres (Cu-MSNs) had uniform spherical morphology (∼100 nm), ordered mesoporous channels (∼2 nm) and homogeneous Cu distribution. Cu-MSNs demonstrated sustained release of both silicon (Si) and Cu ions and controlled degradability. The Cu-MSNs were phagocytized by immune cells and appeared to modulate a favorable immune environment by initiating proper pro-inflammatory cytokines, inducing osteogenic/angiogenic factors and suppressing osteoclastogenic factors by the immune cells. The immune microenvironment induced by the Cu-MSNs led to robust osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the activation of Oncostation M (OSM) pathway. These results suggest that the novel Cu-MSNs could be used as an immunomodulatory agent with osteostimulatory capacity for bone regeneration/therapy application. Statement of significance In order to stimulate both osteogenesis and angiogenesis of stem cells for further bone regeneration, a new kind of hypoxia-inducing copper doped mesoporous silica nanospheres (Cu-MSNs) were prepared via one-pot synthesis. Biological assessments under immune environment which better reflect the in vivo response revealed that the nanospheres possessed osteostimulatory capacity and had potential as immunomodulatory agent for bone regeneration/therapy application. The strategy of introducing controllable amount of therapeutic ions instead of loading expensive drugs/growth factors in mesoporous silica nanosphere provides new options for bioactive nanomaterial functionalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.