944 resultados para DISEASE GENE SH2D1A


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Haem oxygenase-1 (HO-1) is a cytoprotective molecule that is reported to have a protective role in a variety of experimental models of renal injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates HO-1 gene expression; a short number of repeats (S-allele <25) increases transcription. We report the first assessment of the role of this HO-1 gene promoter polymorphism in chronic kidney disease due to autosomal dominant polycystic kidney disease (ADPKD) and IgA nephropathy (IgAN).

Methods: The DNA from 160 patients (99% Caucasian) on renal replacement therapy (RRT) was genotyped. The primary renal disease was ADPKD in 100 patients and biopsy-proven IgAN in 60 patients.

Results: Overall, the mean age at commencement of RRT was not significantly different between patients with and without an S-allele (44.1 years versus 45.0 years, P = 0.64). In patients with ADPKD, the age at commencement of RRT was comparable regardless of the HO-1 genotype (47.7 years versus 46.7 years, P = 0.59). The same was true in patients with IgAN (38.3 years versus 42.2 years, P = 0.28).

Conclusion: This suggests that the functional HO-1 promoter polymorphism does not influence renal survival in CKD due to ADPKD or IgAN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DIN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DIN are cytokines and growth factors such as TGF-beta (transforming growth factor beta) superfamily members, including BMPs (bone morphogenetic protein) and TGF-beta 1, which play key roles in fibrogenic responses of the kidney, including podocyte loss, mesangial cell hypertrophy, matrix accumulation and tubulointerstitial fibrosis. Many of these responses can be mimicked in in vitro models of cells cultured in high glucose. We have applied differential gene expression technologies to identify novel genes expressed in in vitro and in vivo models of DN and, importantly, in human renal tissue. By mining these datasets and probing the regulation of expression and actions of specific molecules, we have identified novel roles for molecules such as Gremlin, IHG-1 (induced in high glucose-1) and CTGF (connective tissue growth factor) in DIN and potential regulators of their bioactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Sporadic Alzheimer's disease (AD) is a common disabling disease of complex aetiology for which there are limited therapeutic options. We sought to investigate the role of the alpha 7 nicotinic acetylcholine receptor gene (CHRNA7) in influencing risk of AD in a large population. CHRNA7 is a strong candidate gene for AD for several reasons: (1) its expression is altered differentially in the AD brain; (2) it interacts directly with beta amyloid peptide (A beta(42)); and (3) agonist activation induces several neuroprotective pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background/Aims: The NOS3 gene is a biological and positional candidate for diabetic nephropathy. However, the relationship between NOS3 polymorphisms and renal disease is inconclusive. This study aimed to clarify the association of NOS3 variants with nephropathy in individuals with type 1 diabetes. Methods: We conducted a case-control study examining all common SNPs in the NOS3 gene by a tag SNP approach. Individuals with type 1 diabetes and persistent proteinuria (cases, n = 718) were compared with individuals with type 1 diabetes but no evidence of renal disease (controls, n = 749). Our replication collection comprised 1,105 individuals with type 1 diabetes recruited to a nephropathy case group and 862 control individuals with normal urinary albumin excretion rates. Meta-analysis was conducted for SNPs where more than three genotype datasets were available. Results: A novel association was identified in the discovery collection (rs1800783, p(genotype) = 0.006, p(allele) = 0.002, OR = 1.26, 95% CI: 1.08-1.47) and supported by independent replication using a tag SNP (rs4496877, pairwise r(2) = 0.96 with rs1800783) in the replication collection (p(genotype) = 0.002, p(allele) = 0.0006, OR = 1.27, 95% CI: 1.10-1.45). Conclusion: The A allele of rs1800783 is a significant risk factor for nephropathy in individuals with type 1 diabetes, and further comprehensive studies are warranted to confirm the definitive functional variant in the NOS3 gene. Copyright (C) 2010 S. Karger AG, Basel