110 resultados para DIFFRACTOMETER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work shows a contribution to the studies of development and solid sinterization of a metallic matrix composite MMC that has as starter materials 316L stainless steel atomized with water, and two different Tantalum Carbide TaC powders, with averages crystallite sizes of 13.78 nm and 40.66 nm. Aiming the metallic matrix s density and hardness increase was added different nanometric sizes of TaC by dispersion. The 316L stainless steel is an alloy largely used because it s high resistance to corrosion property. Although, its application is limited by the low wear resistance, consequence of its low hardness. Besides this, it shows low sinterability and it cannot be hardened by thermal treatments traditional methods because of the austenitic structure, face centered cubic, stabilized mainly in nickel presence. Steel samples added with TaC 3% wt (each sample with different type of carbide), following a mechanical milling route using conventional mill for 24 hours. Each one of the resulted samples, as well as the pure steel sample, were compacted at 700 MPa, room temperature, without any addictive, uniaxial tension, using a 5 mm diameter cylindrical mold, and quantity calculated to obtain compacted final average height of 5 mm. Subsequently, were sintered in vacuum atmosphere, temperature of 1290ºC, heating rate of 20ºC/min, using different soaking times of 30 and 60 min and cooled at room temperature. The sintered samples were submitted to density and micro-hardness analysis. The TaC reforced samples showed higher density values and an expressive hardness increase. The complementary analysis in optical microscope, scanning electronic microscope and X ray diffractometer, showed that the TaC, processed form, contributed with the hardness increase, by densification, itself hardness and grains growth control at the metallic matrix, segregating itself to the grain boarders

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-Ray Powder Diffraction (XRPD) laboratory is a facility placed at Servicios Centrales de apoyo a la Investigación (SCAI) at University of Malaga (UMA) http://www.scai.uma.es/. This facility has three XRPD diffractometers and a diffractometer to measure high-resolution thin-films. X´Pert PRO MPD from PANalytical. This is a bragg-brentano (theta/2theta) with reflection geometry diffractometer which allows to obtain high resolution XRPD data with strictly monochromatic CuKα1 radiation (λ=1.54059Å) [Ge(111) primary monochromator] and an automatic sample charger. Moreover, it has parallel monochromatic CuKα1 radiation (λ=1.54059Å) with an hybrid Ge(220) monochromator for capillary and multiproposal (bulk samples up to 1 Kg) sample holders. The HTK1200N chamber from Anton Paar allows collecting high resolution high temperature patterns. EMPYREAN from PANalytical. This diffractometer works in reflection and transmission geometries with theta/theta goniometer, using CuKα1,2 radiation (λ=1.5418Å), a focusing X-ray mirror and a ultra-fast PIXCEL 3D detector with 1D and 2D collection data modes (microstructural and preferred orientation analysis). Moreover, the TTK450N chamber allows low temperature and up to 450ºC studies. A D8 ADVANCE (BRUKER) was installed in April 2014. It is the first diffractometer in Europe equipped with a Johansson Ge(111) primary monochromator, which gives a strictly monochromatic Mo radiation (λ=0.7093 Å) [1]. It works in transmission mode (with a sample charger) with this high resolution configuration. XRPD data suitable for PDF (Pair Distribution Function) analysis can be collected with a capillary sample holder, due to the high energy and high resolution capabilities of this diffractometer. Moreover, it has a humidity chamber MHC-trans from Anton Paar working on transmission mode with MoKα1 (measurements can be collected at 5 to 95% of relative humidity (from 20 to 80 ºC) and up to 150ºC [2]). Furthermore, this diffractometer also has a reaction chamber XRK900 from Anton Paar (which uses CuKα1,2 radiation in reflection mode), which allows data collection from room temperature to 900ºC with up to 10 bar of different gases. Finally, a D8 DISVOVER A25 from BRUKER was installed on December 2014. It has a five axis Euler cradler and optics devices suitable for high resolution thin film data collection collected in in-plane and out-of-plane modes. To sum up, high-resolution thin films, microstructural, rocking-curve, Small Angle X-ray Scattering (SAXS), Grazing incident SAXS (GISAXS), Ultra Grazing incident diffraction (Ultra-GID) and microdiffraction measurements can be performed with the appropriated optics and sample holders. [1] L. León-Reina, M. García-Maté, G. Álvarez-Pinazo, I. Santacruz, O. Vallcorba, A.G. De la Torre, M.A.G. Aranda “Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations” J. Appl. Crystallogr. 2016, 49, 722-735. [2] J. Aríñez-Soriano, J. Albalad, C. Vila-Parrondo, J. Pérez-Carvajal, S. Rodríguez-Hermida, A. Cabeza, F. Busqué, J. Juanhuix, I. Imaz, Daniel Maspoch “Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal-organic framework upon water adsorption/desorption” Chem. Commun., 2016, DOI: 10.1039/C6CC02908F.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cement hydration is a very complex process in which crystalline phases are dissolving in water and after supersaturation hydrated crystalline and amorphous phases precipitate. Great efforts are being made to develop analytical tools to accurately quantify these processes and X-ray Powder Diffraction (XRPD) combined with Rietveld methodology is a suitable tool to quantify these complex mixtures and their time evolutions. However, some problems/drawbacks should be overcome to fully apply it to cement pastes characterization in order to get accurate phase analyses. In order to tackle this issue, a comparison of the Rietveld quantitative phase analyses (RQPA) obtained using Cu-Kα1, Mo-Kα1, and synchrotron strictly monochromatic radiations of three set of mixtures with increasing amounts of a given phase (spiking-method) is presented. The main aim is to test a simple hypothesis: high energy Mo-radiation, combined with high resolution laboratory X-ray powder diffraction optics, could yield more accurate RQPA, for challenging samples, than well-established Cu-radiation procedure(s). Firstly, a series of crystalline inorganic phase mixtures with increasing amounts of an analyte was studied in order to determine if Mo-Kα1 methodology is as robust as the well-established Cu-Kα1 one. Secondly, a series of crystalline organic phase mixtures with increasing amounts of an organic compound was analyzed. This type of mixture can result in transparency problems in reflection and inhomogeneous loading in narrow capillaries for transmission studies. Finally, a third series with variable amorphous content was studied. Limit of detection in Cu-patterns, ~0.2 wt%, are slightly lower than those derived from Mo-patterns, ~0.3 wt%, for similar recording times and limit of quantification for a well crystallized inorganic phase using laboratory powder diffraction was established ~0.10 wt%. From the obtained results it is inferred that RQPA from Mo-Kα1 radiation have slightly better accuracies than those obtained from Cu-Kα1. The results obtained in the previous comparison have been taken into account to obtain accurate RQPA, including the amorphous component with internal standard methodology, of hydrating cement pastes. The final goal of this second study was understanding the early-stage hydration mechanisms of a variety of cementing systems (Ordinary Portland Cement or Belite Alite Ye’elimite cement) as a function of water content, superplasticizer additives and type and content of sulfate source. In order to do so, X-ray powder diffraction data were taken in-situ with the humidity chamber coupled to the Mo-Kα1 powder diffractometer. Some results of this ongoing investigation will be reported and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, hexagonal mesoporous silica/g-C3N4 (HMS/C3N4) was synthesized by heating a mixture of self-prepared HMS and dicyandiamide. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Fourier transform infrared spectra (FT-IR) and Brunauer–Emmett–Teller analysis (BET). The prepared photocatalysts were applied to decompose bisphenol A (BPA) under UV light illumination. The mass ratios of HMS to melamine were optimized. The results showed that optimal mass ratios HMS to dicyandiamide was 1:1. Even though with the same catalyst dosage (1.0 g/L), the degradation kinetic rate constant of BPA over HMS/C3N4 (0.00526 min−1) was 1.76 times and 1.4 times than those on P25 (0.00298 min−1) and pure C3N4 (0.00383 min−1), while the rate constant of photolysis was only 0.00021 min−1. The enhanced photocatalytic activity of the HMS/C3N4 composite was ascribed to higher specific surface area and less aggregation compared to the pure C3N4. It is feasible and efficient to degrade BPA by HMS/C3N4 composite, which is easier to be separated than pure C3N4 after the pollutant has been removed completely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved method for mass production of good-quality graphene nanosheets (GNs) via ball milling pristine graphite with dry ice is presented. We also report the enhanced performance of these GNs as working electrode in lithium-ion batteries (LIBs). In this improved method, the decrease of necessary ball milling time from 48 to 24 h and the increase of Brunauer–Emmett–Teller surface area from 389.4 to 490 m2/g might be resulted from the proper mixing of stainless steel balls with different diameters and the optimization of agitation speed. The as-prepared GNs are investigated in detail using a number of techniques, such as scanning electron microscope, atomic force microscope, high-resolution transmission electron microscopy, selected area electron diffraction, X-ray diffractometer, and Fourier transform infrared spectroscopic. To demonstrate the potential applications of these GNs, the performances of the LIBs with pure Fe3O4 electrode and Fe3O4/graphene (Fe3O4/G) composite electrode were carefully evaluated. Compared to Fe3O4-LIBs, Fe3O4/G-LIBs exhibited prominently enhanced performance and a reversible specific capacity of 900 mAh g−1 after 5 cycles at 100 and 490 mAh g−1 after 5 cycles at 800 mA g−1. The improved cyclic stability and enhanced rate capability were also obtained.