932 resultados para DIFFERENCE TIME-DOMAIN
Resumo:
When considering the relative fast processing speeds and low power requirements for Wireless Personal Area Networks (WPAN) including Wireless Universal Serial Bus (WUSB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of Ultra Wideband (UWB) (ECMA-368) as the chosen physical implementation for high-rate Wireless US8(1).
Resumo:
In this paper,the Prony's method is applied to the time-domain waveform data modelling in the presence of noise.The following three problems encountered in this work are studied:(1)determination of the order of waveform;(2)de-termination of numbers of multiple roots;(3)determination of the residues.The methods of solving these problems are given and simulated on the computer.Finally,an output pulse of model PG-10N signal generator and the distorted waveform obtained by transmitting the pulse above mentioned through a piece of coaxial cable are modelled,and satisfactory results are obtained.So the effectiveness of Prony's method in waveform data modelling in the presence of noise is confirmed.
Resumo:
We describe a fluid cell for the measurement of aqueous solutions of biomolecules adapted particularly for the requirements of THz time-domain spectroscopy. The design is simple, requires small-volume samples, avoids cross-contamination and is inexpensive.
Resumo:
A quasi-optical de-embedding technique for characterizing waveguides is demonstrated using wideband time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time domain responses were discretised and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an ARX as well as with a state space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize signal distortion and the noise propagating in the ARX and subspace models. The model identification procedure requires isolation of the phase delay in the structure and therefore the time-domain signatures must be firstly aligned with respect to each other before they are compared. An initial estimate of the number of propagating modes was provided by comparing the measured phase delay in the structure with theoretical calculations that take into account the physical dimensions of the waveguide. Models derived from measurements of THz transients in a precision WR-8 waveguide adjustable short will be presented.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The results presented in this paper are based on a research about the application of approximated transformation matrices for electromagnetic transient analyses and simulations in transmission lines. Initially, it has developed the application of a single real transformation matrix for a double three-phase transmission lines, because the symmetry of the distribution of the phase conductors and the ground wires. After this, the same type of transformation matrix has applied for symmetrical single three-phase transmission lines. Analyzing asymmetrical single three-phase lines, it has used three different line configurations. For these transmission line types, the errors between the eigenvalues and the approximated results, called quasi modes, have been considered negligible. on the other hand, the quasi mode eigenvalue matrix for each case was not a diagonal one. and the relative values of the off-diagonal elements of the approximated quasi mode matrix are not negligible, mainly for the low frequencies. Based on this problem, a correction procedure has been applied for minimizing the mentioned relative values. For the correction procedure application, symmetrical and asymmetrical single three-phase transmission line samples have been used. Checking the correction procedure results, analyses and simulations have been carried out in mode and time domain. In this paper, the last results of mentioned research are presented and they related to the time domain simulations.
Resumo:
A novel multisampling time-domain architecture for CMOS imagers with synchronous readout and wide dynamic range is proposed. The architecture was implemented in a prototype of imager with 32x32 pixel array fabricated in AMS CMOS 0.35νm and was characterized for sensitivity and color response. The pixel is composed of an n+/psub photodiode, a comparator and a D flip-flop having 16% fill-factor and 30νmx26νm dimensions. The multisampling architecture requires only a 1 bit per pixel memory instead of 8 bits which is typical for time-domain active pixel architectures. The advantage is that the number of transistors in the pixel is low, saving area and providing higher fill-factor. The maximum frame rate is analyzed as a function of number of bits and array size. The analysis shows that it is possible to achieve high frame rates and operation in video mode with 10 bits. Also, we present analysis for the impact of comparator offset voltage in the fixed pattern noise. Copyright 2007 ACM.
Resumo:
This paper proposes to use a state-space technique to represent a frequency dependent line for simulating electromagnetic transients directly in time domain. The distributed nature of the line is represented by a multiple 1t section network made up of the lumped parameters and the frequency dependence of the per unit longitudinal parameters is matched by using a rational function. The rational function is represented by its equivalent circuit with passive elements. This passive circuit is then inserted in each 1t circuit of the cascade that represents the line. Because the system is very sparse, it is possible to use a sparsity technique to store only nonzero elements of this matrix for saving space and running time. The model was used to simulate the energization process of a 10 km length single-phase line. ©2008 IEEE.