928 resultados para DIELS-ALDER REACTION
Resumo:
Zusammenfassung: rnrn Die vorliegende Arbeit mit dem Thema „Polyphenylendendrimere zur Gefahrstoffdetektion“ ist hauptsächlich synthetisch orientiert und behandelt vor allem den Aufbau neuartiger innenfunktionalisierter Polyphenylendendrimer-Systeme durch die systematische Anwendung wiederholter Diels-Alder- bzw. Desilylierungs-Reaktionen. Diskutiert wird dabei die Synthese der dafür notwendigen Verzweigungsbausteine, die daraus hervorgehende Darstellung der verschiedenen Dendrimere sowie deren Charakterisierung. Als Referenz zu den monodispersen dendritischen Systemen werden parallel verschiedene hyperverzweigte Polymere mittels Diels-Alder-Reaktion bzw. Suzuki-Kupplung dargestellt und beide Makromolekül-Systeme im direkten Vergleich besprochen. Erstmals wird die Einbindung funktioneller Elemente, wie z.B. Triazol oder Pyren, synthetisch ermöglicht. Die dendritischen Systeme werden bis zur dritten Generation aufgebaut, im Fall des Ester-funktionalisierten Systems wird auch eine Darstellung der vierten Generation erreicht. Im Anschluss wird das supramolekulare Verhalten der erhaltenen dendritischen, wie auch polymeren Verbindungen mittels zweier unterschiedlicher Meßmethoden (QMB, ITC) gegenüber verschiedenen Lösungsmitteln und Gefahrstoffen untersucht. Dabei kann eine Diskrepanz im Einlagerungsverhalten der verschiedenen makromolekularen Strukturen gegenüber den verwendeten Gast-Molekülen beobachtet werden. Aufgrund der umfassenden systematischen Analyse aller getesteten Verbindungen wird ein tiefer greifendes Verständnis für die während des Einlagerungsprozesses verantwortlichen Wechselwirkungen aufgebaut. Dabei spielt die dreidimensionale Anordnung des dendritischen Gerüsts, resultierend aus der Polarität und dem sterischen Anspruch der eingebundenen funktionellen Gruppen eine entscheidende Rolle. Als Anwendungsbeispiel der dendritischen Strukturen wird die Verwendung eigens beschichteter Schwingquarze zur Detektion von Sprengstoffen, wie z. B. TATP, erläutert und eine daraus resultierende Steigerung der Sensibilität der Detektoren erklärt.rn
Resumo:
Graphene nanoribbons (GNRs), which are defined as nanometer-wide strips of graphene, are attracting an increasing attention as one on the most promising materials for future nanoelectronics. Unlike zero-bandgap graphene that cannot be switched off in transistors, GNRs possess open bandgaps that critically depend on their width and edge structures. GNRs were predominantly prepared through “top-down” methods such as “cutting” of graphene and “unzipping” of carbon nanotubes, but these methods cannot precisely control the structure of the resulting GNRs. In contrast, “bottom-up” chemical synthetic approach enables fabrication of structurally defined and uniform GNRs from tailor-made polyphenylene precursors. Nevertheless, width and length of the GNRs obtainable by this method were considerably limited. In this study, lateral as well as longitudinal extensions of the GNRs were achieved while preserving the high structural definition, based on the bottom-up solution synthesis. Initially, wider (~2 nm) GNRs were synthesized by using laterally expanded monomers through AA-type Yamamoto polymerization, which proved more efficient than the conventional A2B2-type Suzuki polymerization. The wider GNRs showed broad absorption profile extending to the near-infrared region with a low optical bandgap of 1.12 eV, which indicated a potential of such GNRs for the application in photovoltaic cells. Next, high longitudinal extension of narrow (~1 nm) GNRs over 600 nm was accomplished based on AB-type Diels–Alder polymerization, which provided corresponding polyphenylene precursors with the weight-average molecular weight of larger than 600,000 g/mol. Bulky alkyl chains densely installed on the peripheral positions of these GNRs enhanced their liquid-phase processability, which allowed their formation of highly ordered self-assembled monolayers. Furthermore, non-contact time-resolved terahertz spectroscopy measurements demonstrated high charge-carrier mobility within individual GNRs. Remarkably, lateral extension of the AB-type monomer enabled the fabrication of wider (~2 nm) and long (>100 nm) GNRs through the Diels–Alder polymerization. Such longitudinally extended and structurally well-defined GNRs are expected to allow the fabrication of single-ribbon transistors for the fundamental studies on the electronic properties of the GNRs as well as contribute to the development of future electronic devices.
Resumo:
PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.
Resumo:
The development of multi-target drugs for treating complex multifactorial diseases constitutes an active research ield. This kind of drugs has gained much importance as alternative strategy to combination therapy (“cocktail drugs”).1 A common way to design them brings together two different pharmacophores in one single molecule (so-called dyads). Following this idea and being aware that xanthones2 and 1,2,3-triazoles3 possess important pharmacological properties, we combined these two heterocycles in one molecule to create new dyads with improved therapeutic potential. In this work, new xanthone-1,2,3-triazole dyads were prepared from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones by two different approaches to evaluate their eficiency and sustainability. Both methodologies involved Diels-Alder reactions to build the xanthone core, which were optimized using microwave irradiation as alternative heating method, and 1,3-dipolar cycloadditions to insert the 1,2,3-triazole moiety (Figure 1).4 All final and intermediate compounds were fully characterized by 1D and 2D NMR techniques.
Resumo:
A high yielding synthesis of the pentacyclic diene-dione 1 has enabled investigation of its reactivity as a double dienophile in Diels-Alder [4+2] cycloadditions with isobenzofuran, leading to novel and highly symmetrical three-sided cavitands 3 and 4.
Resumo:
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.
Resumo:
Cocoa is rich in flavonoids, which are potent antioxidants with established benefits for cardiovascular health but unproven effects on neurodegeneration. Sirtuins (SIRTs), which make up a family of deacetylases, are thought to be sensitive to oxidation. In this study, the possible protective effects of cocoa in the diabetic retina were assessed. Rat Müller cells (rMCs) exposed to normal or high glucose (HG) or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and small interfering RNA The experimental animal study was conducted in streptozotocin-induced diabetic rats randomized to receive low-, intermediate-, or high-polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12, 2.9 or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased glial fibrillary acidic protein (GFAP) and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased reactive oxygen species production and PARP-1 activity, augmented the intracellular pool of NAD(+), and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD(+) levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of up-regulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult.
Resumo:
The aim of this study was to evaluate the tissue compatibility of a silorane-based resin system (FiltekTM Silorane) and a methacrylate-based nanoparticle resin (FiltekTM Supreme XT) after implantation in the subcutaneous connective tissue of isogenic mice. One hundred and thirty five male isogenic BALB/c mice were randomly assigned to 12 experimental and 3 control groups, according to the implanted material and the experimental period of 7, 21 and 63 days. At the end of each period, the animals were killed and the tubes with the surrounding tissues were removed and processed for microscopic analysis. Samples were subjected to a descriptive and a semi-quantitative analyses using a 4-point scoring system (0-3) to evaluate the collagen fiber formation and inflammatory infiltrate. Data were statistically analyzed using the Kruskal Wallis test (?=0.05). The results showed that there was no significant difference between the experimental and control groups considering the three evaluation periods (p>0.05). The silorane-based and the methacrylate-based nanoparticle resins presented similar tissue response to that of the empty tube (control group) after subcutaneous implantation in isogenic mice.
Resumo:
This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.
Resumo:
INTRODUCTION: This study evaluated whether leprosy reactions could be associated with oral infection. METHODS: Leprosy patients (n = 38) with (Group I) and without (Group II) oral infections were selected. Reactions were identified from the clinical and histopathological features associated with serum C-reactive protein (CRP) and10kDa interferon-gamma-induced protein (IP-10) levels, determined before and after elimination of the foci of infection. RESULTS: Group I presented more reactions than group II did, and improvement of the reactions after dental treatment. Serum CRP and IP-10 did not differ before and after the dental treatment, but differed between the groups. CONCLUSIONS: Oral infection could be an exacerbating factor in leprosy reactions.
Resumo:
Attention deficit, impulsivity and hyperactivity are the cardinal features of attention deficit hyperactivity disorder (ADHD) but executive function (EF) disorders, as problems with inhibitory control, working memory and reaction time, besides others EFs, may underlie many of the disturbs associated with the disorder. OBJECTIVE: To examine the reaction time in a computerized test in children with ADHD and normal controls. METHOD: Twenty-three boys (aged 9 to 12) with ADHD diagnosis according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, 2000 (DSM-IV) criteria clinical, without comorbidities, Intelligence Quotient (IQ) >89, never treated with stimulant and fifteen normal controls, age matched were investigated during performance on a voluntary attention psychophysical test. RESULTS: Children with ADHD showed reaction time higher than normal controls. CONCLUSION: A slower reaction time occurred in our patients with ADHD. This findings may be related to problems with the attentional system, that could not maintain an adequate capacity of perceptual input processes and/or in motor output processes, to respond consistently during continuous or repetitive activity.
Resumo:
Testing contexts have been shown to critically influence experimental results in psychophysical studies. One of these contexts that show important modulation of the behavioral effects of different stimulatory conditions is the separate (blocked) or mixed presentation of these stimulatory conditions. The study presents evidence that the apparent discriminabilities of two target stimuli can change according to which of these two testing contexts is used. A cross inside a ring and a vertical line inside a ring were presented as go stimuli in a go/no-go reaction time task. In one experiment, each of these stimuli was presented to a different group of volunteers and in another experiment they were presented to the same group of volunteers, randomly mixed in the blocks of trials. Similar reaction times were obtained for the two stimuli in the first experiment, and different reaction times (faster for the cross) in the second experiment. The latter result indicates that the two stimuli have different discriminabilities from the no-go stimulus; the cross having greater discriminability. This difference is however masked, presumably by the adoption of specific compensatory attentional sets, in a separate testing context.
Resumo:
We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.
Resumo:
Cellulose acetates with different degrees of substitution (DS, from 0.6 to 1.9) were prepared from previously mercerized linter cellulose, in a homogeneous medium, using N,N-dimethylacetamide/lithium chloride as a solvent system. The influence of different degrees of substitution on the properties of cellulose acetates was investigated using thermogravimetric analyses (TGA). Quantitative methods were applied to the thermogravimetric curves in order to determine the apparent activation energy (Ea) related to the thermal decomposition of untreated and mercerized celluloses and cellulose acetates. Ea values were calculated using Broido's method and considering dynamic conditions. Ea values of 158 and 187 kJ mol-1 were obtained for untreated and mercerized cellulose, respectively. A previous study showed that C6OH is the most reactive site for acetylation, probably due to the steric hindrance of C2 and C3. The C6OH takes part in the first step of cellulose decomposition, leading to the formation of levoglucosan and, when it is changed to C6OCOCH3, the results indicate that the mechanism of thermal decomposition changes to one with a lower Ea. A linear correlation between Ea and the DS of the acetates prepared in the present work was identified.