888 resultados para DEATH RECEPTORS FAMILY MEMBERS
Resumo:
Autopsy-negative sudden cardiac deaths (SCD) seen in forensic practice are most often thought to be the result of sudden arrhythmic death syndrome. Postmortem genetic analysis is recommended in such cases, but is currently performed in only a few academic centers. In order to determine actual current practice, an on-line questionnaire was sent by e-mail to members of various forensic medical associations. The questions addressed routine procedures employed in cases of sudden cardiac death (autopsy ordering, macroscopic and microscopic cardiac examination, conduction tissue examination, immunohistochemistry and electron microscopy, biochemical markers, sampling and storage of material for genetic analyses, toxicological analyses, and molecular autopsy). Some questions concerned the legal and ethical aspects of genetic analyses in postmortem examinations, as well as any existing multidisciplinary collaborations in SCD cases. There were 97 respondents, mostly from European countries. Genetic testing in cases of sudden cardiac death is rarely practiced in routine forensic investigation. Approximately 60% of respondents reported not having the means to perform genetic postmortem testing and 40% do not collect adequate material to perform these investigations at a later date, despite working at university hospitals. The survey demonstrated that many of the problems involved in the adequate investigation of SCD cases are often financial in origin, due to the fact that activities in forensic medicine are often paid by and dependent on the judicial authorities. Problems also exist concerning the contact with family members and/or the family doctor, as well as the often-nonexistent collaboration with others clinicians with special expertise beneficial in the investigation of SCD cases, such as cardiologists and geneticists. This study highlights the importance in establishing guidelines for molecular autopsies in forensic medicine.
Resumo:
Sudden cardiac death (SCD) is by definition unexpected and cardiac in nature. The investigation is almost invariably performed by a forensic pathologist. Under these circumstances the role of the forensic pathologist is twofold: (1.) to determine rapidly and efficiently the cause and manner of death and (2.) to initiate a multidisciplinary process in order to prevent further deaths in existing family members. If the death is determined to be due to "natural" causes the district attorney in charge often refuses further examinations. However, additional examinations, i.e. extensive histopathological investigations and/or molecular genetic analyses, are necessary in many cases to clarify the cause of death. The Swiss Society of Legal Medicine created a multidisciplinary working group together with clinical and molecular geneticists and cardiologists in the hope of harmonising the approach to investigate SCD. The aim of this paper is to close the gap between the Swiss recommendations for routine forensic post-mortem cardiac examination and clinical recommendations for genetic testing of inherited cardiac diseases; this is in order to optimise the diagnostic procedures and preventive measures for living family members. The key points of the recommendations are (1.) the forensic autopsy procedure for all SCD victims under 40 years of age, (2.) the collection and storage of adequate samples for genetic testing, (3.) communication with the families, and (4.) a multidisciplinary approach including cardiogenetic counselling.
Resumo:
Edward W. Bowslaugh (1843-1923) was the son of Jacob and Anna (Beamer) Bowslaugh. Edward Bowslaugh married Mary Southward, and the couple had six children, Edgar Morley, Edward Freeman, twins Alfred Malcolm and Alice Mary, Annie Olivia, John Jacob and Mabel Florence. Edward W. Bowslaugh was a farmer, contractor and owner of the Grimsby Planing Mills in Grimsby, Ont. and Bowslaugh’s Planing Mill in Kingsville, Ont. The mills manufactured door and sash trim and other wood related products. Some customers contracted the firm to provide wood products for cottages being built at Grimsby Park, the Methodist camp ground. Some time before 1885 Edward Bowslaugh and his family moved to Kingsville, Ont. to open up a new planing mill and door and sash manufactory. He later sold the Grimsby Planing Mills to Daniel Marsh. The diaries and account books include many names of workers as well as friends and family members residing in the Grimsby and Kingsville areas. James M. Bowslaugh (1841-1882) was the son of Jacob and Anna (Beamer) Bowslaugh. James married first Anna Catharine Merritt and after her death in 1875 he married Mary Gee in 1877. James and Anna had three children, Eliza, James Herbert, George Hiram, all died very young. James and Mary Gee had one son, Charles Leopold Kenneth Frederich Bowslaugh, b. 1881. James Bowslaugh was a farmer and lumberman, much like his younger brother Edward. James’ early diaries often note the activities of himself and his brother Edward. Both Edward and James were heavily involved in the Methodist church, teaching or leading Sunday school and attending prayer meetings. Alfred M. Bowslaugh b. 1873 was the son of Edward W. Bowslaugh and his wife Mary Southward. The school notebook is from his days as a student in Kingsville, Ont.
Resumo:
A single page from the Deaths section of the Bell Family Bible listing the names and dates of death for various members of the family.The handwritten entries appear to read as follows: "John William Taylor, died April 30th Anne Domini 1862; aged 52 years. Jess J Bell died April 11th 1872 O Mary Franices Bell died August 20th 1872. Mrs. Susan Hall. Died May, 24th, 1898 Born January 1st 1829 age. 69 William B Bell died March 19th 1897 Richard Jones died June 6th 1912 Mastam Jone died Charles H. Hall died November 11th 1916."
Resumo:
Les maladies cardiovasculaires (MCV) sont les principales causes de mortalité et de morbidité à travers le monde. En Amérique du Nord, on estime à 90 millions le nombre d’individus ayant une ou plusieurs MCV, à près de 1 million le nombre de décès reliés par année et à 525 milliards de dollars les coûts directs et indirects en 2010. En collaboration avec l’équipe du Dre. Boileau, notre laboratoire a récemment identifié, le troisième locus impliqué dans l’hypercholestérolémie familiale. Une étude publiée dans le New Engl J Med a révélé que l’absence de la convertase PCSK9 réduit de 88% le risque de MCV, corrélé à une forte réduction du taux de cholestérol plasmatique (LDL-C). Il fut démontré que PCSK9 lie directement le récepteur aux lipoprotéines de faible densité (LDLR) et, par un mécanisme méconnu, favorise sa dégradation dans les endosomes/lysosomes provoquant ainsi une accumulation des particules LDL-C dans le plasma. Dans cet ouvrage, nous nous sommes intéressés à trois aspects bien distincts : [1] Quels sont les cibles de PCSK9 ? [2] Quelle voie du trafic cellulaire est impliquée dans la dégradation du LDLR par PCSK9 ? [3] Comment peut-on inhiber la fonction de PCSK9 ? [1] Nous avons démontré que PCSK9 induit la dégradation du LDLR de même que les récepteurs ApoER2 et VLDLR. Ces deux membres de la famille du LDLR (fortes homologies) sont impliqués notamment dans le métabolisme des lipides et de la mise en place de structures neuronales. De plus, nous avons remarqué que la présence de ces récepteurs favorise l’attachement cellulaire de PCSK9 et ce, indépendamment de la présence du LDLR. Cette étude a ouvert pour la première fois le spectre d’action de PCSK9 sur d’autres protéines membranaires. [2] PCSK9 étant une protéine de la voie sécrétoire, nous avons ensuite évalué l’apport des différentes voies du trafic cellulaire, soit extra- ou intracellulaire, impliquées dans la dégradation du LDLR. À l’aide de milieux conditionnées dérivés d’hépatocytes primaires, nous avons d’abord démontré que le niveau extracellulaire de PCSK9 endogène n’a pas une grande influence sur la dégradation intracellulaire du LDLR, lorsqu’incubés sur des hépatocytes provenant de souris déficientes en PCSK9 (Pcsk9-/-). Par analyses de tri cellulaire (FACS), nous avons ensuite remarqué que la surexpression de PCSK9 diminue localement les niveaux de LDLR avec peu d’effet sur les cellules voisines. Lorsque nous avons bloqué l’endocytose du LDLR dans les cellules HepG2 (lignée de cellules hépatiques pour l’étude endogène de PCSK9), nous n’avons dénoté aucun changement des niveaux protéiques du récepteur. Par contre, nous avons pu démontrer que PCSK9 favorise la dégradation du LDLR par l’intermédiaire d’une voie intracellulaire. En effet l’interruption du trafic vésiculaire entre le réseau trans-Golgien (RTG) et les endosomes (interférence à l’ARN contre les chaînes légères de clathrine ; siCLCs) prévient la dégradation du LDLR de manière PCSK9-dépendante. [3] Par immunobuvardage d’affinité, nous avons identifié que la protéine Annexine A2 (AnxA2) interagit spécifiquement avec le domaine C-terminal de PCSK9, important pour son action sur le LDLR. Plus spécifiquement, nous avons cartographié le domaine R1 (acides aminés 34 à 108) comme étant responsable de l’interaction PCSK9AnxA2 qui, jusqu’à présent, n’avait aucune fonction propre. Finalement, nous avons démontré que l’ajout d’AnxA2 prévient la dégradation du LDLR induite par PCSK9. En somme, nos travaux ont pu identifier que d’autres membres de la famille du LDLR, soit ApoER2 et VLDLR, sont sensibles à la présence de PCSK9. De plus, nous avons mis en évidence que l’intégrité du trafic intracellulaire est critique à l’action de PCSK9 sur le LDLR et ce, de manière endogène. Finalement, nous avons identifié l’Annexine A2 comme unique inhibiteur naturel pouvant interférer avec la dégradation du LDLR par PCSK9. Il est indéniable que PCSK9 soit une cible de premier choix pour contrer l’hypercholestérolémie afin de prévenir le développement de MCV. Cet ouvrage apporte donc des apports considérables dans notre compréhension des voies cellulaires impliquées, des cibles affectées et ouvre directement la porte à une approche thérapeutique à fort potentiel.
Resumo:
La sepsis es un evento inflamatorio generalizado del organismo inducido por un daño causado generalmente por un agente infeccioso. El patógeno más frecuentemente asociado con esta entidad es el Staphylococcus aureus, responsable de la inducción de apoptosis en células endoteliales debida a la producción de ceramida. Se ha descrito el efecto protector de la proteína C activada (PCA) en sepsis y su relación con la disminución de la apoptosis de las células endoteliales. En este trabajo se analizó la activación de las quinasas AKT, ASK1, SAPK/JNK y p38 en un modelo de apoptosis endotelial usando las técnicas de Western Blotting y ELISA. Las células endoteliales (EA.hy926), se trataron con C2-ceramida (130μM) en presencia de inhibidores químicos de cada una de estas quinasas y PCA. La supervivencia de las células en presencia de inhibidores químicos y PCA fue evaluada por medio de ensayos de activación de las caspasas 3, 7 y 9, que verificaban la muerte celular por apoptosis. Los resultados evidencian que la ceramida reduce la activación de AKT y aumenta la activación de las quinasas ASK, SAPK/JNK y p38, en tanto que PCA ejerce el efecto contrario. Adicionalmente se encontró que la tiorredoxina incrementa la activación/fosforilación de AKT, mientras que la quinasa p38 induce la defosforilación de AKT.
Resumo:
This article explores the ways that parental death represents a 'vital conjuncture' for Serer young people that reconfigures and potentially transforms intergenerational caring responsibilities in different spatial and temporal contexts. Drawing on semi-structured interviews with young people (aged 15-27), family members, religious and community leaders and professionals in rural and urban Senegal, I explore young people's responses to parental death. 'Continuing bonds' with the deceased were expressed through memories evoked in homespace, shared family practices and gendered responsibilities to 'take care of' bereaved family members, to cultivate inherited farmland and to fulfil the wishes of the deceased. Parental death could reconfigure intergenerational care and lead to shifts in power dynamics, as eldest sons asserted their position of authority. While care-giving roles were associated with agency, the low social status accorded to young women's paid and unpaid domestic work undermined their efforts. The research contributes to understandings of gendered nuances in the experience of bereavement and continuing bonds and provides insight into intra-household decision-making processes, ownership and control of assets. Analysis of the culturally specific meanings of relationships and a young person's social location within hierarchies of gender, age, sibling birth order and wider socio-cultural norms and practices is needed.
Resumo:
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Resumo:
The Levine family held an extensive reunion during the Summer of 2009 during which 29 DVDs of raw material were recorded for use in the creation of a Levine family mini-documentary. Many of these DVDs contain oral history interviews conducted by Wendy Miller, one of the organizers of the reunion. Although these interviews were not designed for historical research, they contain valuable historical information. Some of the family members interviewed include: Ben Arnon (4/5), Marjorie, Stephen, and Michael Kaplan (8), Glenyce Miller Kaplan (starts in 15, continues in 9; separate interview in 13), Burt, Phyllis, and Louis Shiro (9) [Burt Shiro also in 26/27], Myrt and Gordon Wolman (9), Ted and Billy Alfond (10), Barbara and Joan Alfond (10), Susan and Peter Alfond (10), Alice Emory [caregiver for Bibby] (11), Eric Bloom and Stu Cushner (11), Saralee Kaplan Bloom (11), Sarah Miller Arnon (12), Kayla and Jenna Cushner (12), Josh Soros and Eliana Miller-Kaplan (12), Sarah, Wendy, and Julie Miller (starts in 12, continues in 14), Bill Shutzer (13), Maschia and Glicka Kaplan, Sharon Kushner, Dan Hood (13), Gene, Alex, Kate Cohen (14), Ben, Jeremy, Joselyn Arnon (14), Wendy and Julie Miller at the store (15), and Eric Bloom (15).
Resumo:
Abstract Background The etiology of idiopathic scoliosis remains unknown and different factors have been suggested as causal. Hereditary factors can also determine the etiology of the disease; however, the pattern of inheritance remains unknown. Autosomal dominant, X-linked and multifactorial patterns of inheritances have been reported. Other studies have suggested possible chromosome regions related to the etiology of idiopathic scoliosis. We report the genetic aspects of and investigate chromosome regions for adolescent idiopathic scoliosis in a Brazilian family. Methods Evaluation of 57 family members, distributed over 4 generations of a Brazilian family, with 9 carriers of adolescent idiopathic scoliosis. The proband presented a scoliotic curve of 75 degrees, as determined by the Cobb method. Genomic DNA from family members was genotyped. Results Locating a chromosome region linked to adolescent idiopathic scoliosis was not possible in the family studied. Conclusion While it was not possible to determine a chromosome region responsible for adolescent idiopathic scoliosis by investigation of genetic linkage using microsatellites markers during analysis of four generations of a Brazilian family with multiple affected members, analysis including other types of genomic variations, like single nucleotide polymorphisms (SNPs) could contribute to the continuity of this study.
Resumo:
Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.
Resumo:
The regulation of cell death is a key element in building up and maintaining both innate and adaptive immunity. A critical role in this process plays the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor family of death receptors. Recent work suggests that sialic acid binding immunoglobulin (Ig) -like lectins (Siglecs) are also empowered to transmit death signals, at least into myeloid cells. Strikingly, death induction by Siglecs is enhanced when cells are exposed to proinflammatory survival cytokines. Based on these recent insights, we hypothesize that at least some members of the Siglec family regulate immune responses via the activation of caspase-dependent and caspase-independent cell death pathways.
Resumo:
The role of platelets as inflammatory cells is demonstrated by the fact that they can release many growth factors and inflammatory mediators, including chemokines, when they are activated. The best known platelet chemokine family members are platelet factor 4 (PF4) and beta-thromboglobulin (beta-TG), which are synthesized in megakaryocytes, stored as preformed proteins in alpha-granules and released from activated platelets. However, platelets also contain many other chemokines such as interleukin-8 (IL-8), growth-regulating oncogene-alpha(GRO-alpha), epithelial neutrophil-activating protein 78 (ENA-78), regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), and monocyte chemotactic protein-3 (MCP-3). They also express chemokine receptors such as CCR4, CXCR4, CCR1 and CCR3. Platelet activation is a feature of many inflammatory diseases such as heparin-induced thrombocytopenia, acquired immunodeficiency syndrome, and congestive heart failure. Substantial amounts of PF4, beta-TG and RANTES are released from platelets on activation, which may occur during storage. Although very few data are available on the in vivo effects of transfused chemokines, it has been suggested that the high incidence of adverse reactions often observed after platelet transfusions may be attributed to the chemokines present in the plasma of stored platelet concentrates.
Resumo:
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.
Resumo:
Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.