999 resultados para Cyprus Studies
Resumo:
This paper presents the details of an experimental study on the shear behaviour and strength of a recently developed, cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB). The new LSB sections with rectangular hollow flanges are produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They are commonly used as flexural members in buildings. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed experimental study involving 36 shear tests was undertaken to investigate the shear behaviour of 10 different LSB sections. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure using both single and back to back LSB arrangements. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Comparison of experimental results with corresponding predictions from the current Australian and North American cold-formed steel design rules showed that the current design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the shear strength of LSBs based on the design equations in the North American Specification. This paper presents the details of this experimental study and the results. When reduced height web side plates or only one web side plate was used, the shear capacity of LSB was reduced. Details of these tests and the results are also presented in this paper. Keywords: LiteSteel beam, Shear strength, Shear tests, Cold-formed steel structures, Direct strength method, Slender web, Hollow flanges.
Resumo:
In this chapter, we are particularly concerned with making visible the general principles underlying the transmission of Social Studies curriculum knowledge, and considering it in light of a high-stakes mandated national assessment task. Specifically, we draw on Bernstein’s theoretical concept of pedagogic models as a tool for analysing orientations to teaching and learning. We introduce a case in point from the Australian context: one state Social Studies curriculum vis-a-vis one part of the Year Three national assessment measure for reading. We use our findings to consider the implications for the disciplinary knowledge of Social Studies in the communities in which we are undertaking our respective Australian Research Council Linkage project work (Glasswell et al.; Woods et al.). We propose that Social Studies disciplinary knowledge is being constituted, in part, through power struggles between different agencies responsible for the production and relay of official forms of state curriculum and national literacy assessment. This is particularly the case when assessment instruments are used to compare and contrast school results in highly visible web based league tables (see, for example, http://myschoolaustralia.ning.com/).
Resumo:
Anecdotal evidence from the infrastructure and building sectors highlights issues of drugs and alcohol and its association with safety risk on construction sites. Operating machinery and mobile equipment, proximity to live traffic together with congested sites, electrical equipment and operating at heights conspire to accentuate the potential adverse impact of drugs and alcohol in the workplace. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgement from drugs and alcohol. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients; unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. This study has four key objectives. Firstly, using the standard World Health Organisation AUDIT, a national qualitative and quantitative assessment of the use of drugs and alcohol will be carried out. This will build upon similar studies carried out in the Australian energy and mining sectors. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Thirdly, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. Finally, an implementation plan will be developed from data gathered from both managers and construction employees. Such an approach stands to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This paper will provide an overview of the background and significance of the study as well as outlining the proposed methodology that will be used to evaluate the safety impacts of alcohol and other drugs in the construction industry.
Resumo:
Fourier transfonn (FT) Raman, Raman microspectroscopy and Fourier transform infrared (FTIR) spectroscopy have been used for the structural analysis and characterisation of untreated and chemically treated wool fibres. For FT -Raman spectroscopy novel methods of sample presentation have been developed and optimised for the analysis of wool. No significant fluorescence was observed and the spectra could be obtained routinely. The stability of wool keratin to the laser source was investigated and the visual and spectroscopic signs of sample damage were established. Wool keratin was found to be extremely robust with no signs of sample degradation observed for laser powers of up to 600 m W and for exposure times of up to seven and half hours. Due to improvements in band resolution and signal-to-noise ratio, several previously unobserved spectral features have become apparent. The assignment of the Raman active vibrational modes of wool have been reviewed and updated to include these features. The infrared spectroscopic techniques of attenuated total reflectance (ATR) and photoacoustic (P A) have been used to examine shrinkproofed and mothproofed wool samples. Shrinkproofing is an oxidative chemical treatment used to selectively modifY the surface of a wool fibre. Mothproofing is a chemical treatment applied to wool for the prevention of insect attack. The ability of PAS and A TR to vary the penetration depth by varying certain instrumental parameters was used to obtain spectra of the near surface regions of these chemically treated samples. These spectra were compared with those taken with a greater penetration depth, which therefore represent more of the bulk wool sample. The PA and ATR spectra demonstrated that oxidation was restricted to the near-surface layer of wool. Extensive curve fitting of ATR spectra of untreated wool indicated that cuticle was composed of a mixed protein conformation, but was predominately that of an a.-helix. The cortex was proposed to be a mixture of both a.helical and ~-pleated sheet protein conformations. These findings were supported by PAS depth profiling results. Raman microspectroscopy was used in an extensive investigation of the molecular structure of the wool fibre. This included determining the orientation of certain functional groups within the wool fibre and the symmetry of particular vibrations. The orientation ofbonds within the wool fibre was investigated by orientating the wool fibre axis parallel and then perpendicular to the plane of polarisation of the electric vector of the incident radiation. It was experimentally determined that the majority of C=O and N-H bonds of the peptide bond of wool lie parallel to the fibre axis. Additionally, a number of the important vibrations associated with the a-helix were also found to lie parallel to the fibre axis. Further investigation into the molecular structure of wool involved determining what effect stretching the wool fibre had on bond orientation. Raman spectra of stretched and unstretched wool fibres indicated that extension altered the orientation ofthe aromatic rings, the CH2 and CH3 groups of the amino acids. Curve fitting results revealed that extension resulted in significant destruction of the a-helix structure a substantial increase in the P-pleated sheet structure. Finally, depolarisation ratios were calculated for Raman spectra. The vibrations associated with the aromatic rings of amino acids had very low ratios which indicated that the vibrations were highly symmetrical.