972 resultados para Cylindrical Pore
Resumo:
Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
Results of photoelastic investigations conducted on cylindrical tubes (made of Araldite material) containing cracks oriented at 0°, 30°, 45°, 60° and 90° to the axis of the tube and subjected to axial and torsional loads are reported. The stress-intensity factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a new method developed by the authors by modifying Rakesh et al.'s method [Proc. 26th Congress of ISTAM, India (1981)] were employed to evaluate the mixed-mode SIFs.
Resumo:
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
Resumo:
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n).The shallow shell theory (which is more accurate at higher frequencies)is used to model the cylinder. Initially, the in vacua shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high-and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter p, we find solutions for the limiting cases of small and large p. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases.Poisson's ratio v is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders(n). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.
Resumo:
The effect of having an edge reinforcement around a circular elastic inclusion in a cylindrical shell is studied. The influence of various parameters of the reinforcement such as area of cross section and moment of inertia on the stress concentrations around the inclusion is investigated. It is found that for certain inclusion parameters it is possible to get an optimum reinforcement, which gives minimum stress concentration around the inclusion. The effect of moment of inertia of the reinforcement of SCF is found to be negligible. The results are plotted in a non-dimensional form and a comparison with flat plate results is made which show the curvature effect. In the limiting case of a rigid reinforcement the results tend to those of a rigid circular inclusion. Results are also presented for different values of μe the ratio of extensional rigidity of shell to that of the inclusion.
Resumo:
For resonant column tests conducted in the flexure mode of excitation, a new methodology has been proposed to find the elastic modulus and associated axial strain of a cylindrical sample. The proposed method is an improvement over the existing one, and it does not require the assumption of either the mode shape or zero bending moment condition at the top of the sample. A stepwise procedure is given to perform the necessary calculations. From a number of resonant column experiments on aluminum bars and dry sand samples, it has been observed that the present method as compared with the one available in literature provides approximately (i) 5.9%-7.3% higher values of the elastic modulus and (ii) 6.5%-7.3% higher values of the associated axial strains.
Resumo:
Analytical short time solution of moving boundary in heat conduction in a cylindrical mould under prescribed flux boundary condition has been studied in this paper. Partial differential equations are converted to integro-differential equations. These integro-differential equations which are coupled have been solved analytically for short time by choosing suitable series expansions for the unknown quantitities.
Resumo:
The general time dependent source problem has been solved by the method of transforms (Laplace, Lebedev–Kontorovich in succession) and the solution is obtained in the form of an infinite series involving Legendre functions. The solutions in the case of harmonic time dependence and the incident plane wave have been derived from the above solution and are presented in the form of an infinite series. In the case of an incident plane wave, the series has been summed and the final solution involves an improper integral which behaves like a complementary error function for large values of the argument. Finally, the far field evaluation has been shown. The results are compared with those of Sommerfeld's half-plane diffraction problem with unmixed boundary conditions.
Resumo:
The nature of magnetization reversal in an isolated cylindrical nanomagnet has been studied employing time-resolved magnetoresistance measurement. We find that the reversal mode is highly stochastic, occurring either by multimode or single-step switching. Intriguingly, the stochasticity was found to depend on the alignment of the driving magnetic field to the long axis of the nanowires, where predominantly multimode switching gives way to single-step switching behavior as the field direction is rotated from parallel to transverse with respect to the nanowire axis.